Skip to main content
Log in

A modified method to estimate eddy diffusivity in the North Pacific using altimeter eddy statistics

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The method proposed by Stammer (1998) is modified using eddy statistics from altimeter observation to obtain more realistic eddy diffusivity (K) for the North Pacific. Compared with original estimates, the modified K has remarkably reduced values in the Kuroshio Extension (KE) and North Equatorial Counter Current (NECC) regions, but slightly enhanced values in the Subtropical Counter Current (STCC) region. In strong eastward flow areas like the KE and NECC, owing to a large difference between mean flow velocity and propagation velocity of mesoscale eddies, tracers inside the mesoscale eddies are transported outside rapidly by advection, and mixing length L is hence strongly suppressed. The low eddy probability (P) is also responsible for the reduced K in the NECC area. In the STCC region, however, L is mildly suppressed and P is very high, so K there is enhanced. The zonally-averaged K has two peaks with comparable magnitudes, in the latitude bands of the STCC and KE. In the core of KE, because of the reduced values of P and L, the zonally-averaged K is a minimum. Zonally-integrated eddy heat transport in the KE band, calculated based on the modified K, is much closer to the results of previous independent research, indicating the robustness of our modified K. The map of modified K provides useful informationfor modeling studies in the North Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bryden H L, Heath R A. 1985. Energetic eddies at the northern edge of the Antarctic Circumpolar Current. Prog. Oceanogr., 14: 65–87.

    Article  Google Scholar 

  • Bryden H L, Brady E C. 1989. Eddy momentum and heatfluxes and their effects on the circulation of the equatorial Pacific Ocean. J. Mar. Res., 47: 55–79.

    Article  Google Scholar 

  • Bryan K, Dukowicz J K, Smith R D. 1999. On the mixing coefficient in the parameterization of bolus velocity. J. Phys. Oceanogr., 29: 2 442–2 456.

    Article  Google Scholar 

  • Chaigneau S, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns. Progr. Oceanogr., 79: 106–119.

    Article  Google Scholar 

  • Chen G, Gan J, Xie Q, Chu X, Wang D, Hou Y. 2012. Eddy heat and salt transports in the South China Sea and their seasonal modulations. J. Geophys. Res., 117: C05021, http://dx.doi.org/10.1029/2011JC007724.

    Article  Google Scholar 

  • Chelton D B, de Szoeke R A, Schlax M G, El Naggar K, Siwertz N. 1998. Geographical variability of the first-baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28: 433–460.

    Article  Google Scholar 

  • Chelton D B, Schlax M G, Samelson R M, de Szoeke R A. 2007. Global observations of westward energy propagation in theocean: Rossby waves or nonlinear eddies? Geophys. Res. Lett., 34:L15, 606.

    Google Scholar 

  • Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Prog r. Oceanogr., 91(2): 97–166.

    Article  Google Scholar 

  • Davis R. 1987. Modelling eddy transport of passive tracers. J. Mar. Res., 45: 635–666.

    Article  Google Scholar 

  • Davis R. 1991. Observing the general circulation with floats. Deep Sea Res., 38(Suppl.1): S531–S571.

    Google Scholar 

  • Ducet N, Le Traon P Y, Reverdin G. 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105: 19 477–19 498.

    Article  Google Scholar 

  • Eden C. 2006. Thickness diffusivity in the Southern Ocean. Geophys. Res. Lett., 33: L11606, http://dx.doi.org/10.1029/2006GL026157.

    Article  Google Scholar 

  • Eden C, Greatbatch R J, Willebrand J. 2007a. A diagnosis of thickness fluxes in an eddy-resolving model. J. Phys. Oceanogr., 37: 727–742.

    Article  Google Scholar 

  • Eden C, Greatbatch R J, Olbers D. 2007b. Interpreting eddy fluxes. J. Phys. Oceanogr., 37: 1 282–1 296.

    Google Scholar 

  • England M H, Rahmstorf S. 1998. Sensitivity of ventilationrates and radiocarbon uptake to subgrid-scale mixing in ocean models. J. Phys. Oceanogr., 29: 2 802–2 827.

    Google Scholar 

  • Ferreira D, Marshall J, Heimbach P. 2005. Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35: 1 891–1 910.

    Article  Google Scholar 

  • Ferrari R, Nikurashin M. 2010. Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Ocea n ogr., 40: 1 501–1 519.

    Google Scholar 

  • Holloway G. 1986. Estimation of oceanic eddy transports from satellite altimetry. Nature, 323: 243–244.

    Article  Google Scholar 

  • Isern-Fontanet J, García-Ladona E, Font J. 2003. Identificationof marine eddies from altimetry. J. Atmos. Oceanic Technol., 20: 772–778.

    Article  Google Scholar 

  • Jayne S R, Marotzke J. 2002. The oceanic eddy heat transport. J. Phys. Oceanogr., 32: 3 328–3 345.

    Article  Google Scholar 

  • Marshall J, Shutts G. 1981. A note on rotational and diver-gent eddy fluxes. J. Phys. Oceanogr., 11: 1 677–1 680.

    Google Scholar 

  • Marshall J, Shuckburgh H, Hill C. 2006. Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr., 36: 1 806–1 821.

    Article  Google Scholar 

  • Maximenko N, Niiler P, Rio M, Melnichenko O, Centurioni L, Chambers D, Zlotnicki V, Galperin B. 2009. Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J. Atmos. Oceanic Tech., 26(9): 1 910–1 919.

    Article  Google Scholar 

  • Nakamura N. 1996. Two-dimensional mixing, edgeformation, and permeability diagnosed in area coordinates. J. Atmos. Sci., 53: 1 524–1 537.

    Article  Google Scholar 

  • Prandtl L. 1925. Bericht über untersuchungen zur ausgebildeten turbulenz. Z. Angew. Math. Mech., 5: 136–139. (in German)

    Google Scholar 

  • Qiu B, Chen S. 2005. Eddy-induced heat transport in the Subtropical North Pacicfic from Argo, TMI, and Altimetry measurements. J. Phys. Oceanogr., 35: 458–473.

    Article  Google Scholar 

  • Rossby T. 1987. On the energetics of the Gulf Stream at 73W. J. Mar. Res., 45: 59–82.

    Article  Google Scholar 

  • Roemmich D, Gilson J, 2001. Eddy transport of heat and thermocline waters in the North Pacific: A key to interannual/decadal climate variability?. J. Phys. Oceanogr., 31: 675–687.

    Article  Google Scholar 

  • Stammer D. 1998. On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr., 28: 727–739.

    Article  Google Scholar 

  • Stammer D, Wunsch C, Ueyoshi K. 2006. Temporal changes in ocean eddy transports, J. Phys. Oceanogr., 36: 543–550.

    Article  Google Scholar 

  • Taylor G 1921. Diffusion by continuous movements. Proc. Roy. Soc. A, 64: 476–490.

    Google Scholar 

  • Volkov D L, Larnicol G, Dorandeu J. 2007. Improving the quality of satellite altimetry data over continental shelves. J. Geophys. Res., 112: C06020, http://dx.doi.org/10.1029/2006JC003765.

    Article  Google Scholar 

  • Wunsch C. 1999. Where do ocean eddy heat fluxes matter?. J. Geophys. Res., 104: 13 235–13 249.

    Article  Google Scholar 

  • Yim B Y, Noh Y, You S H, Yoon J H, Qiu B, Chen S. 2010. The vertical structure of eddy heat transport simulated by an eddy-resolving OGCM. J. Phys. Oceanogr., 40: 340–353.

    Article  Google Scholar 

  • Zhang Z, Zhong Y, Tian J, Yang Q, Zhao W. Estimation of eddy heat transport in the global ocean from Argo data. Acta Oceanol. Sin., in press.

  • Zhurbas V, Oh S I. 2004. Drifter-derived maps of lateral diffusivity in the Pacific and Atlantic Oceans in relation to surface circulation patterns. J. Geophys. Res., 109: C05015, http://dx.doi.org/10.1029/2003JC002241.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwei Tian  (田纪伟).

Additional information

Supported by the Major Program of the National Natural Science Foundation of China (No. 40890153) and the National High Technology Research and Development Program of China (863 Program) (No. 2008AA09A402)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Li, Y. & Tian, J. A modified method to estimate eddy diffusivity in the North Pacific using altimeter eddy statistics. Chin. J. Ocean. Limnol. 31, 925–933 (2013). https://doi.org/10.1007/s00343-013-2214-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-013-2214-2

Keyword

Navigation