Skip to main content

Advertisement

Log in

Paleoproductivity evolution in the West Philippine Sea during the last 700 ka

  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

In order to reconstruct the paleoproductivity evolution history of the West Philippine Sea during the last 700 ka, the vertical gradient of Δδ13C in dissolved inorganic carbon (Δδ13C between those of foraminifera Pulleniatina obliquiloculata and Cibicidoides wuellerstorfi) and planktonic foraminiferal assemblages were analysed in piston Core MD06-3047 retrieved from the Benham Rise (east of the Luzon Island). Paleoproductivity evolution in the West Philippine Sea during the last 700 ka is closely related to glacial-interglacial cycles and precession-controlled insolation. Controlling factors of paleoproductivity could have been both thermocline fluctuations related with ENSO-like processes and eolian input associated with East Asian winter monsoon, and the former could have been the primary factor. A higher productivity and a shallower thermocline coeval with the occurrence of low CO2 concentrations in the EPICA Dome C ice core might indicate that biological export production in the low-latitude could act as a significant sink in the global carbon cycle, and modify atmospheric CO2 concentrations. Spectral analysis further reveals that the paleoproductivity is mainly controlled by thermocline fluctuations subjected to ENSO processes responding to processional variability of insolation. High coherences in eccentricity, obliquity and precession periods further revealing the close link between thermocline fluctuations, paleoproductivity and atmospheric CO2 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Anderson R F, Fleisher M Q, Lao Y. 2006. Glacial-interglacial variability in the delivery of dust to the central equatorial Pacific Ocean. Earth and Planetary Science Letters, 242(3–4): 406–414.

    Article  Google Scholar 

  • Andreasen D J, Ravelo A C. 1997. Tropical Pacific Ocean thermocline depth reconstructions for the Last Glacial Maximum. Paleoceanography, 12(3): 395–413.

    Article  Google Scholar 

  • Beaufort L, de Garidel-Thoron T, Linsley B, Oppo D, Buchet N. 2003. Biomass burning and oceanic primary production estimates in the Sulu Sea area over the last 380 kyr and the East Asian monsoon dynamics. Marine Geology, 201(1–3): 53–65.

    Article  Google Scholar 

  • Beaufort L, de Garidel-Thoron T, Mix A C, Pisias N G. 2001. ENSO-like forcing on oceanic primary production during the Late Pleistocene. Science, 293(5 539): 2 440–2 444.

    Article  Google Scholar 

  • Beaufort L, Lancelot Y, Camberlin P, Cayre O, Vincent E, Bassinot F, Labeyrie L. 1997. Insolation cycles as a major control of equatorial Indian Ocean primary production. Science, 278(5 342): 1 451–1 454.

    Article  Google Scholar 

  • Berger W H, Killingley J S. 1977. Glacial-Holocene transition in deep-sea carbonates: selective dissolution and the stable isotope signal. Science, 197(4 303): 563–566.

    Article  Google Scholar 

  • Broecker W S, Peng T H. 1982. Tracers in the Sea. Eldigio Press, New York.

    Google Scholar 

  • Chen M T, Prell W L. 1998. Faunal distribution patterns of planktonic foraminifers in surface sediments of the lowlatitude Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 137(1–2): 55–77.

    Article  Google Scholar 

  • Clement A C, Seager R, Cane M A. 1999. Orbital controls on the El Niño/Southern Oscillation and the tropical climate. Paleoceanography, 14(4): 441–456.

    Article  Google Scholar 

  • Coale K H, Johnson K S, Fitzwater S E, Gordon R M, Tanner S, Chavez F P, Ferioli L, Sakamoto C, Rogers P, Millero F, Steinberg P, Nightingale P, Cooper D, Cochlan W P, Landry M R, Constantinou J, Rollwagen G, Trasvina A, Kudela R. 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 383(6 600): 495–501.

    Article  Google Scholar 

  • Dansgaard W, Johnsen S, Clausen H, Dahl-Jensen D, Gundestrup N, Hammer C, Hvidberg C, Steffensen J, Sveinbjornsdottir A, Jouzel J. 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364(6434): 218–220.

    Article  Google Scholar 

  • Groetsch J, Wu G, Berger W H. 1991. Carbonate saturation cycles in the western equatorial Pacific. In: Einsele G, Ricken W, Seilacher A eds. Cycles and Events in Stratigraphy. Springer, Heidelberg. p.110–125.

    Google Scholar 

  • Grootes P M, Stuiver M, White J W C, Johnsen S, Jouzel J. 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366(6 455): 552–554.

    Article  Google Scholar 

  • Herguera J C, Berger W H. 1991. Paleoproductivity from benthic foraminifera abundance: glacial to postglacial change in the west-equatorial Pacific. Geology, 19(12): 1 173–1 176.

    Article  Google Scholar 

  • Herguerra J C, Berger W H. 1994. Glacial to postglacial drop in productivity in the western equatorial Pacific: mixing rate vs. nutrient concentration. Geology, 22: 629–632.

    Article  Google Scholar 

  • Holbourn A, Kuhnt W, Schulz M, Erlenkeuser H. 2005. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature, 438(7 067): 483–487.

    Article  Google Scholar 

  • Jian Z, Huang B, Kuhnt W, Lin H L. 2001. Late Quaternary upwelling intensity and East Asian Monsoon forcing in the South China Sea. Quaternary Research, 55(3): 363–370.

    Article  Google Scholar 

  • Kienast M, Steinke S, Stattegger K, Calvert S E. 2001. Synchronous tropical South China Sea SST change and Greenland warming during deglaciation. Science, 291(5 511): 2 132–2 134.

    Article  Google Scholar 

  • Kim J H, Rimbu N, Lorenz S J, Lohmann G, Nam S-I, Schouten S, Rühlemann C, Schneider R R. 2004. North Pacific and North Atlantic sea-surface temperature variability during the Holocene. Quaternary Science Reviews, 23(20–22): 2 141–2 154.

    Google Scholar 

  • Koutavas A, Lynch-Stieglitz J, Marchitto T M Jr., Sachs J P. 2002. El Nino-like pattern in Ice Age tropical Pacific Sea Surface Temperature. Science, 297(5 579): 226–230.

    Article  Google Scholar 

  • Lea D W, Pak D K, Spero H J. 2000. Climate impact of late Quaternary equatorial Pacific Sea surface temperature variations. Science, 289(5 485): 1 719–1 724.

    Article  Google Scholar 

  • Li T, Zhao J, Nan Q, Sun R, Yu X. 2011. Palaeoproductivity evolution in the centre of the western Pacific warm pool during the last 250 ka. Journal of Quaternary Science, 26(5): 478–484.

    Article  Google Scholar 

  • Li T, Zhao J, Sun R, Chang F, Sun H. 2010. The variation of upper ocean structure and paleoproductivity in the Kuroshio source region during the last 200 kyr. Marine Micropaleontology, 75(1–4): 50–61.

    Article  Google Scholar 

  • Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18 O records. Paleoceanography, 20(1): PA1003.

    Article  Google Scholar 

  • Loubere P. 1999. A multiproxy reconstruction of biological productivity and oceanography in the eastern equatorial Pacific for the past 30,000 years. Marine Micropaleontology, 37(2): 173–198.

    Article  Google Scholar 

  • Luthi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker T F. 2008. High-resolution carbon dioxide concentration record 650,000–800,000[thinsp] years before present. Nature, 453(7 193): 379–382.

    Article  Google Scholar 

  • Murray R W, Leinen M, Knowlton C W. 2012. Links between iron input and opal deposition in the Pleistocene equatorial Pacific Ocean. Nature Geosci, 5(4): 270–274.

    Article  Google Scholar 

  • Nameroff T J, Calvert S E, Murray J W. 2004. Glacialinterglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals. Paleoceanography, 19(1): PA1010.

    Article  Google Scholar 

  • Paillard D, Labeyrie L, Yiou P. 1996. Macintosh Program performs time-series analysis. Eos. Trans. AGU, 77(39): 379–379.

    Article  Google Scholar 

  • Pelejero C, Grimalt J O, Sarnthein M, Wang L, Flores J A. 1999. Molecular biomarker record of sea surface temperature and climatic change in the South China Sea during the last 140,000 years. Marine Geology, 156(1): 109–121.

    Article  Google Scholar 

  • Perks H M, Charles C D, Keeling R F. 2002. Precessionally forced productivity variations across the equatorial Pacific. Paleoceanography, 17(3): 1 037.

    Article  Google Scholar 

  • Petit J R, Jouzel J, Raynaud D, Barkov N I, Barnola J M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov V M, Legrand M, Lipenkov V Y, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399(6 735): 429–436.

    Article  Google Scholar 

  • Pisias N G, Mix A C. 1997. Spatial and temporal oceanographic variability of the eastern equatorial Pacific during the late Pleistocene: evidence from radiolaria microfossils. Paleoceanography, 12(3): 381–393.

    Article  Google Scholar 

  • Qiu B, Lukas R. 1996. Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. J. Geophys. Res., 101(C5): 12 315–12 330.

    Article  Google Scholar 

  • Qu T, Lukas R. 2003. The Bifurcation of the North Equatorial Current in the Pacific. Journal of Physical Oceanography, 33(1): 5–18.

    Article  Google Scholar 

  • Ravelo A C, Fairbanks R G, Philander S G H. 1990. Reconstructing tropical atlantic hydrography using planktontic foraminifera and an ocean model. Paleoceanography, 5(3): 409–431.

    Article  Google Scholar 

  • Ravelo A C, Fairbanks R G. 1992. Oxygen isotopic composition of multiple species of planktonic foraminifera: recorders of the modern photic zone temperature gradient. Paleoceanography, 7(6): 815–831.

    Article  Google Scholar 

  • Rich J J, Hollander D, Birchfield G E. 1999. Role of regional bioproductivity in atmospheric CO2 changes. Global Biogeochem. Cycles, 13(2): 531–553.

    Article  Google Scholar 

  • Sarnthein M, Winn K. 1990. Reconstruction of low and middle latitude export productivity, 30000 years B. P. to present: implication for control of global carbon reservoirs. In: Schlesinger M E ed. Climate-Ocean Interaction. Kluwer Academic Publishers, Dordrecht. p.319–334.

    Chapter  Google Scholar 

  • Schlitzer R. 2007. Assimilation of radiocarbon and chlorofluorocarbon data to constrain deep and bottom water transports in the world ocean. Journal of Physical Oceanography, 37(2): 259–276.

    Article  Google Scholar 

  • Schulz M, Stattegger K. 1997. Spectrum: spectral analysis of unevenly spaced paleoclimatic time series. Computers and Geosciences, 23(9): 929–945.

    Article  Google Scholar 

  • Stott L, Poulsen C, Lund S, Thunell R. 2002. Super ENSO and global climate oscillations at millennial time scales. Science, 297(5 579): 222–226.

    Article  Google Scholar 

  • Thompson P R, Be A W H, Duplessy J-C, Shackleton N J. 1979. Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific Oceans. Nature, 280(5 723): 554–558.

    Article  Google Scholar 

  • Tian J, Wang P, Cheng X. 2004. Pleistocene precession forcing of the upper ocean structure variations of the southern South China Sea. Progress in Natural Science, 14(11): 1 004–1 009.

    Article  Google Scholar 

  • Turk D, McPhaden M J, Busalacchi A J, Lewis M R. 2001. Remotely sensed biological production in the equatorial pacific. Science, 293(5 529): 471–474.

    Article  Google Scholar 

  • Wan S, Yu Z, Clift P D, Sun H, Li A, Li T. 2012. History of Asian eolian input to the West Philippine Sea over the last one million years. Palaeogeography, Palaeoclimatology, Palaeoecology, 326–328: 152–159.

    Article  Google Scholar 

  • Wang P X. 2006. Orbital forcing of the low-latitude processes. Quaternary Sciencees, 25: 7.

    Google Scholar 

  • Wang P, Jian Z, Zhao Q, Li Q, Wang R, Liu Z, Wu G, Shao L, Wang J, Huang B, Fang D, Tian J, Li J, Li X, Wei G, Sun X, Luo Y, Su X, Mao S, Chen M. 2003. Evolution of the South China Sea and monsoon history revealed in deepsea records. Chinese Science Bulletin, 48(23): 2 549–2 561.

    Google Scholar 

  • Wefer G, Berger W H. 1991. Isotope paleontology: growth and composition of extant calcareous species. Marine Geology, 100(1–4): 207–248.

    Article  Google Scholar 

  • Woodruff F, Savin S M, Douglas R G. 1980. Biological fractionation of oxygen and carbon isotopes by recent benthic foraminifera. Marine Micropaleontology, 5: 3–11.

    Article  Google Scholar 

  • Zahn R, Winn K, Sarnthein M. 1986. Benthic foraminiferal δ13C and accumulation rates of organic carbon: Uvigerina peregrina group and Cibicidoides wuellerstorfi. Paleoceanography, 1(1): 27–42.

    Article  Google Scholar 

  • Zhang J, Wang P, Li Q, Cheng X, Jin H Y, Zhang S. 2007. Western equatorial Pacific productivity and carbonate dissolution over the last 550 kyr: Foraminiferal and nannofossil evidence from ODP Hole 807A. Marine Micropaleontology, 64(3–4): 121–140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiegang Li  (李铁刚).

Additional information

Supported by the National Natural Science Foundation of China (Nos. 41230959, 41076030, 40906038, 41106042, 41006032), the Pilot Project of the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-221), and the Foundation of Key Laboratory of Marine Geology and Environment of Chinese Academy of Sciences (No. MGE2011KG01)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Z., Li, T., Chang, F. et al. Paleoproductivity evolution in the West Philippine Sea during the last 700 ka. Chin. J. Ocean. Limnol. 31, 435–444 (2013). https://doi.org/10.1007/s00343-013-2117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-013-2117-z

Keyword