Skip to main content

Advertisement

Log in

Turbulent dissipation and mixing in Prydz Bay

  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

In this paper, we present measurements of velocity, temperature, salinity, and turbulence collected in Prydz Bay, Antarctica, during February, 2005. The dissipation rates of turbulent kinetic energy (ɛ) and diapycnal diffusivities (K z ) were estimated along a section in front of the Amery Ice Shelf. The dissipation rates and diapycnal diffusivities were spatially non-uniform, with higher values found in the western half of the section where ɛ reached 10−7 W/kg and K z reached 10−2 m2/s, about two and three orders of magnitude higher than those in the open ocean, respectively. In the western half of the section both the dissipation rates and diffusivities showed a high-low-high vertical structure. This vertical structure may have been determined by internal waves in the upper layer, where the ice shelf draft acts as a possible energy source, and by bottom-generated internal waves in the lower layer, where both tides and geostrophic currents are possible energy sources. The intense diapycnal mixing revealed in our observations could contribute to the production of Antarctic Bottom Water in Prydz Bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Fer I. 2006. Scaling turbulent dissipation in an Arctic fjord. Deep-Sea Res. II, 53(1–2): 77–95.

    Article  Google Scholar 

  • Foster T D, Foldvik A, Middleton J H. 1987. Mixing and bottom water formation in the shelf break region of the southern Weddell Sea. Deep-Sea Res. I, 34(11): 1 771–1 794.

    Article  Google Scholar 

  • Garrett C, Munk W. 1975. Space-time scales of internal waves: a progress report. J. Geophys. Res., 80: 291–297.

    Article  Google Scholar 

  • Gregg M, Sanford T, Winkel D. 2003. Reduced mixing from the breaking of internal waves in equatorial ocean waters. Nature, 422: 513–515.

    Article  Google Scholar 

  • Hemer M, Hunter J, Coleman R. 2006. Barotropic tides beneath the Amery Ice Shelf. J. Geophys. Res., 111: C11008.

    Article  Google Scholar 

  • Heywood K, Naveira Garabato A, Stevens D. 2002. High mixing rates in the Southern Ocean. Nature, 415: 1 011–1 014.

    Article  Google Scholar 

  • Jacobs S, Georgi D. 1977. Observations on the southwest Indian/Antarctic Ocean. Deep-Sea Res., 24(Suppl.): 43–84.

    Google Scholar 

  • Kunze E, Firing E, Hummon J, Chereskin T, Thurnherr A. 2006. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36: 1 553–1 576.

    Google Scholar 

  • Ledwell J, St. Laurent L, Girton J, Toole J. 2011. Diapycnal mixing in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 41: 241–246.

    Article  Google Scholar 

  • Levine M, Padman L, Morison J, Muench R. 1997. Internal waves and tides in the western Weddell Sea: observations from Ice Station Weddell. J. Geophys. Res., 102: 1 073–1 089.

    Google Scholar 

  • Liang X F, Thurnherr A M. 2012. Eddy-modulated internal waves and mixing on a mid-ocean ridge. J. Phys. Oceanogr., 42: 1 242–1 248.

    Article  Google Scholar 

  • Meijers A, Klocker A, Bindoff N, Williams G, Marsland S. 2010. The circulation and water masses of the Antarctic shelf and continental slope between 30°E and 80°E. Deep-Sea Res. II, 57(9–10): 723–737

    Article  Google Scholar 

  • Meredith M, Locarnini R, Van Scoy K, Watson A, Heywood K, King B. 2000. On the sources of Weddell Gyre Antarctic Bottom Water. J. Geophys. Res., 105: 1 093–1 104.

    Google Scholar 

  • Muench R, Padman L, Gordon A, Orsi A. 2009. A dense water outflow from the Ross Sea, Antarctica: mixing and the contribution of tides. J. Mar. Syst., 77(4): 369–387.

    Article  Google Scholar 

  • Nasmyth P. 1970. Oceanic Turbulence. Ph.D. Thesis. University of British Columbia, Vancouver. 69p.

    Google Scholar 

  • Naveira Garabato A, Polzin K, King B, Heywood K, Visbeck M. 2004. Widespread intense turbulent mixing in the Southern Ocean. Science, 303: 210–213.

    Article  Google Scholar 

  • Naveira Garabato A, Stevens D, Watson A, Roether W. 2007. Short-circuiting of the overturning circulation in the Antarctic Circumpolar Current. N ature, 447: 194–197.

    Google Scholar 

  • Nikurashin M, Ferrari R. 2010a. Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: theory. J. Phys. Oceanogr., 40: 1 055–1 074.

    Google Scholar 

  • Nikurashin M, Ferrari R. 2010b. Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Application to the Southern Ocean. J. Phys. Oceanogr., 40: 2 025–2 042.

    Google Scholar 

  • Orsi A, Nowlin W, Whitworth T. 1993. On the circulation and stratification of the Weddell Gyre. Deep-Sea Res. I, 40: 169–203.

    Article  Google Scholar 

  • Orsi A, Johnson G, Bullister J. 1999. Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr., 43(1): 55–109.

    Article  Google Scholar 

  • Osborn T. 1980. Estimates of the local rate of vertical diffusion from dissipation Measurements. J. Phys. Oceanogr., 10: 83–89.

    Article  Google Scholar 

  • Padman L, Howard S, Orsi A, Muench R. 2009. Tides of the northwestern Ross Sea and their impact on dense outflows of Antarctic Bottom Water. Deep Sea Res. II, 56(13–14): 818–834.

    Article  Google Scholar 

  • Polzin K, Kunze E, Hummon J, Firing E. 2002. The finescale response of lowered ADCP velocity profiles. J. Atmos. Oceanic. Technol., 19: 205–223.

    Article  Google Scholar 

  • Rintoul S. 1998. On the origin and influence of Adélie Land bottom water. In: Jacobs S, Weiss R eds. Ocean, Ice and Atmosphere: Interactions at the Antarctic Continental Margin. Antarct. Res. Ser., 75: 151–171. AGU, Washington, D. C.

    Article  Google Scholar 

  • Robertson R, Padman L, Levine M. 1995. Fine structure, microstructure, and vertical mixing processes in the upper ocean in the western Weddell Sea. J. Geophys. Res., 100(C9): 18 517–18 535.

    Article  Google Scholar 

  • Sloyan B. 2005. Spatial variability of the mixing in the Southern Ocean. Geophys. Res. Lett., 32: L18603.

    Article  Google Scholar 

  • Tamura T, Ohshima K, Nihashi S. 2008. Mapping of sea ice production for Antarctic coastal polynyas. Geophys. Res. Lett., 35: L07606.

    Article  Google Scholar 

  • Tian J, Yang Q, Zhao W. 2009. Observation of enhanced diapycnal mixing in the South China Sea. J. Phys. Oceanogr., 39: 3 191–3 203.

    Article  Google Scholar 

  • Visbeck M. 2002. Deep velocity profiling using lowered acoustic Doppler current profilers: bottom track and inverse solutions. J. Atmos. Oceanic Technol., 19: 794–807.

    Article  Google Scholar 

  • Wolk F, Yamazaki H, Seuront L, Lueck R. 2002. A new freefall profiler for measuring biophysical microstructure. J. Atmos. Oceanic Technol., 19: 780–793.

    Article  Google Scholar 

  • Wong A, Bindoff N, Forbes A. 1998. Ocean-ice shelf interaction and possible bottom water formation in Prydz Bay, Antarctica. In: Jacobs S, Weiss R eds. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin. Antarct. Res. Ser., 75: 173–187. AGU, Washington, D. C.

    Chapter  Google Scholar 

  • Yabuki T, Suga T, Hanawa K, Matsuoka K, Kiwada H, Watanabe T. 2006. Possible source of the Antarctic bottom water in the Prydz Bay region. J. Oceanogr., 62: 649–655.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxuan Yang  (杨庆轩).

Additional information

Supported by the National Natural Science Foundation of China (Nos. 40906004, 40890153, 41176008, and 91028008), the National High Technology Research and Development Program of China (863 Program) (No. 2008AA09A402), the Polar Science Strategic Foundation of China (No. 20080206), the Key Lab Open Research Foundation of China (No. KP201006), and the National Key Technology Research and Development Program of China (No. 2006BAB18B02)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Q., Tian, J., Zhao, W. et al. Turbulent dissipation and mixing in Prydz Bay. Chin. J. Ocean. Limnol. 31, 445–453 (2013). https://doi.org/10.1007/s00343-013-2040-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-013-2040-3

Keyword