Chinese Journal of Oceanology and Limnology

, Volume 30, Issue 2, pp 212–224 | Cite as

Three tropical seagrasses as potential bio-indicators to trace metals in Xincun Bay, Hainan Island, South China

  • Lei Li (李磊)
  • Xiaoping Huang (黄小平)Email author


Concentrations of the trace metals Cu, Cd, Pb, and Zn were measured in seawater, rhizosphere sediments, interstitial water, and the tissues of three tropical species of seagrasses (Thalassia hemprichii, Enhalus acoroides and Cymodocea rotundata) from Xincun Bay of Hainan Island, South China. We analyzed different environmental compartments and the highest concentrations of Pb and Zn were found in the interstitial and seawater. The concentrations of Cd and Zn were significantly higher in blades compared with roots or rhizomes in T. hemprichii and E. acoroides, respectively. A metal pollution index (MPI) demonstrated that sediment, interstitial water, and seagrasses in the sites located nearest anthropogenic sources of pollution had the most abundant metal concentrations. There was obvious seasonal variation of these metals in the three seagrasses with higher concentrations of Cu, Pb and Zn in January and Cd in July. Furthermore, the relationships between metal concentrations in seagrasses and environmental compartments were positively correlated significantly. The bioconcentration factors (BCF) demonstrated that Cd from the tissues of the three seagrasses might be absorbed from the sediment by the roots. However, for C. rotundata, Zn is likely to be derived from the seawater through its blades. Therefore, the blades of T. hemprichii, E. acoroides and C. rotundata are potential bio-indicators to Cd content in sediment, and additionally Zn content (C. rotundata only) in seawater.


metal contamination seagrass bioaccumulation bio-indicator South China Sea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acevedo-Figueroa D, Jiménez B D, Rodríguez-Sierra C J. 2005. Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environ. Pollut., 141: 336–342.CrossRefGoogle Scholar
  2. Alvarez-Legorreta T, Mendoza-Cozatl D, Moreno-Sanchez R, Gold-Bouchot G. 2008. Thiol peptides induction in the seagrass Thalassia testudinum (Banks ex König) in response to cadmium exposure. Aquat. Bot., 86:12–19.Google Scholar
  3. Ancora S, Bianchi N, Butini A, Buia M C, Gambi M C, Leonzio C. 2004. Posidonia oceanica as a biomonitor of trace elements in the gulf of naples: temporal trends by lepidochronology. Environ. Toxicol. Chem., 23: 1 093–1 099.CrossRefGoogle Scholar
  4. Calmano W, Ahlf W, Forstner U. 1996. Sediment quality assessment: chemical and biological approaches. In: Calmano W, Forstner U eds. Sediments and Toxic Substances. Springer, Berlin. p.1–35.Google Scholar
  5. Campanella L, Conti M E, Cubadda F, Sucapane C. 2001. Trace metals in seagrass, algae and molluscs from an uncontaminated area in the Mediterranean. Environ. Pollut., 111: 117–126.CrossRefGoogle Scholar
  6. Capiomont A, Piazzi L, Pergent G. 2000. Seasonal variations of total mercury in foliar tissues of Posidonia oceanica. J. Mar. Biol. Assoc. UK., 80: 1 119–1 123.CrossRefGoogle Scholar
  7. Cozza R, Pangaro T, Maestrini P, Giordani T, Natali L, Cavallini A. 2006. Isolation of putative type 2 metallothionein encoding sequences and spatial expression pattern in the seagrass Posidonia oceanica. Aquat. Bot., 85: 317–323.CrossRefGoogle Scholar
  8. Dawes C J, Phillips R C, Morrison G. 2004. Seagrass communities of the gulf coast of florida: status and ecology. Florida Fish and Wildlife Conservation Commission Fish and Wildlife Research Institute, and the Tampa Bay Estuary Program, St. Petersburg, Florida.Google Scholar
  9. den Hartog C. 1970. The Sea-Grasses of the World. North-Holland, Amsterdam.Google Scholar
  10. den Hartog C, Yang Z D. 1990. A catalogue of the seagrasses of China. Chin. J. Oceanol. Limnol., 8(1): 74–91.CrossRefGoogle Scholar
  11. Doyle C J, Pablo F, Lim R P, Hyne R V. 2003. Assessment of metal toxicity in sediment pore water from Lake Macquarie, Australia. Arch. Environ. Contam. Toxicol., 44: 343–350.CrossRefGoogle Scholar
  12. Duarte C M. 1999. Seagrass ecology at the turn of the millennium: challenges for the new century. Aquat. Bot., 65: 7–20.CrossRefGoogle Scholar
  13. Green E P, Short F T. 2003. World Atlas of Seagrass. University of California Press, Berkeley.Google Scholar
  14. Hemminga M A, Duarte C M. 2000. Seagrass Ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  15. Huang X P, Huang L M, Li Y H, Xu Z Z, Fong C W, Huang D J, Han Q Y, Huang H, Tan Y H, Liu S. 2006. Main seagrass beds and threats to their habitats in the coastal sea of South China. Chin. Sci. Bull., 51(Supp II): 136–142.CrossRefGoogle Scholar
  16. Lafabrie C, Pergent G, Kantin R, Pergent-Martini C, Gonzalez J L. 2007. Trace metals assessment in water, sediment, mussel and seagrass species—validation of the use of Posidonia oceanica as a metal biomonitor. Chemosphere, 68: 2 033–2 039.CrossRefGoogle Scholar
  17. Lafabrie C, Pergent G, Pergent-Martini C. 2009. Utilization of the seagrass Posidonia oceanica to evaluate the spatial dispersion of metal contamination. Sci. Total Environ., 407: 2 440–2 446.Google Scholar
  18. Lafabrie C, Pergent-Martini C, Pergent G. 2008. Metal contamination of Posidonia oceanica meadows along the Corsican coastline (Mediterranean). Environ. Pollut., 151: 262–268.CrossRefGoogle Scholar
  19. Lewis M A, Dantin D D, Chancy C A, Abel K C, Lewis C G. 2007. Florida seagrass habitat evaluation: a comparative survey for chemical quality. Environ. Pollut., 146: 206–218.CrossRefGoogle Scholar
  20. Lewis M A, Devereux R. 2009. Nonnutrient anthropogenic chemicals in seagrass ecosystems: fate and effects. Environ. Toxicol. Chem., 28: 644–661.CrossRefGoogle Scholar
  21. Lyngby J E, Brix H. 1982. Seasonal and environmental variation of Cd, Cu, Pb, Zn concentration in eelgrass Zostera marina L. in the Limfjord, Denmark. Aquat. Bot., 14: 59–74.CrossRefGoogle Scholar
  22. Lyngby J E, Brix H. 1987. Monitoring of heavy metal contamination in the Limtjjord, Denmark, using biological indicators and sediment. Sci. Total Environ., 64: 239–252.CrossRefGoogle Scholar
  23. Lyngby J E, Brix H. 1989. Heavy metals in eelgrass (Zostera marina L.) during growth and decomposition. Hydrobiologia, 176–177: 189–196.CrossRefGoogle Scholar
  24. Macinnis-Ng C M O, Ralph P J. 2002. Towards a more ecologically relevant assessment of the impact of heavy metals on the photosynthesis of the seagrass, Zostera capricorni. Mar. Pollut. Bull., 45: 100–106.CrossRefGoogle Scholar
  25. Malea P, Boubonari T, Kevrekidis T. 2008. Iron, zinc, copper, lead and cadmium contents in Ruppia maritima from a Mediterranean coastal lagoon: monthly variation and distribution in different plant fractions. Bot. Mar., 51: 320–330.CrossRefGoogle Scholar
  26. Malea P, Haritonidis S, Kevrekidis T. 1994. Seasonal and local variations of metal concentrations in the seagrass Posidonia oceanica (L.) Delile in the Antikyra Gulf, Greece. Sci. Total Environ., 153: 225–235.CrossRefGoogle Scholar
  27. Malea P, Haritonidis S. 1995. Local distribution and seasonal variation of Fe, Ph, Zn, Cu, Cd, Na, K, Ca, and Mg concentrations in the seagrass Cymodocea nodosa (Ucria) Aschers. in the Antikyra Gulf, Greece. Mar. Ecol., 16: 41–56.CrossRefGoogle Scholar
  28. Malea P. 1994. Seasonal variation and local distribution of metals in the seagrass Halophila stipulacea (Forsk.) Aschers. in the Antikyra Gulf, Greece. Environ. Pollut., 85: 77–85.CrossRefGoogle Scholar
  29. Mayes R A, Maclntosh A W, Anderson V I. 1977. Uptake of cadmium and lead by a rooted aquatic macrophyte (Elodea canadensis). Ecol., 58: 1 176–1 180.CrossRefGoogle Scholar
  30. Mudroch A, Capobianco J A. 1979. Effects of mine effluents on uptake of Co, Ni, Cu, As, Zn, Cd, Cr and Pb by aquatic macrophytes. Hydrobiologia, 64: 223–231.CrossRefGoogle Scholar
  31. Nienhuis P H. 1986. Background levels of heavy metals in nine tropical seagrass species in Indonesia. Mar. Pollut. Bull., 17: 508–511.CrossRefGoogle Scholar
  32. Peng K J, Luo C L, Lou L Q, Li X D, Shen Z G. 2008. Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment. Sci. Total Environ., 392: 22–29.CrossRefGoogle Scholar
  33. Pergent-Martini C, Pergent G. 2000. Marine phanerogams as a tool in the evaluation of marine trace-metal contamination: an example from the Mediterranean. Int. J. Environ. Pollut., 13: 126–147.CrossRefGoogle Scholar
  34. Prange J A, Dennison W C. 2000. Physiological responses of five seagrass species to trace metals. Mar. Pollut. Bull., 41: 327–336.CrossRefGoogle Scholar
  35. Pulich W M. 1980. Heavy metal accumulation by selected Halodule wrightii Asch. populations in the Corpus Christi Bay area. Contrib. Mar. Sci. Univ. Tex., 23: 89–100.Google Scholar
  36. Ralph P J, Burchett M D. 1998. Photosynthetic response of Halophila ovalis to heavy metal stress. Environ. Pollut., 103: 91–101.CrossRefGoogle Scholar
  37. Schlacher-Hoenlinger M A, Schlacher T A. 1998. Accumulation, contamination, and seasonal variability of trace metals in the coastal zone patterns in a seagrass meadow from the Mediterranean. Mar. Biol., 131: 401–410.CrossRefGoogle Scholar
  38. Shi Y J, Fan H Q, Cui X J, Pan L H, Li S, Song X K. 2010. Overview on seagrasses and related research in China. Chin. J. Oceanol. Limnol., 28: 329–339.CrossRefGoogle Scholar
  39. Thangaradjou T, Nobi E P, Dilipan E, Sivakumar K, Susila S. 2010. Heavy metal enrichment in seagrasses of Andaman Islands and its implication to the health of the coastal ecosystem. Indian J. Mar. Sci., 39: 85–91.Google Scholar
  40. Tiller K G, Merry R H, Zarcinas B A, Ward T J. 1989. Regional geochemistry of metal-contaminated surficial sediments and seagrasses in upper Spencer Gulf, South Australia. Estuar. Coast. Shelf Sci., 28: 473–493.CrossRefGoogle Scholar
  41. Usero J, Morillo J, Gracia I. 2005. Heavy metal concentrations in molluscs from the Atlantic coast of southern Spain. Chemosphere, 59: 1 175–1 181.CrossRefGoogle Scholar
  42. Virnstein R W. 1987. Seagrass-associated invertebrate communities of the southeastern USA: a review. In: Durako M J, Phillips R C, Lewis R R eds. Proceedings of the Symposium on Subtropical—Tropical Seagrasses of the Southeastern United States. Florida Department of Natural Resources, Florida Marine Research Publications, Tallahassee. p.89–116.Google Scholar
  43. Wang C, Wang L Y, Sun Q. 2010. Response of phytochelatins and their relationship with cadmium toxicity in a floating macrophyte Pistia stratiotes L. at environmentally relevant concentrations. Water Environ. Res., 82: 147–154.CrossRefGoogle Scholar
  44. Ward T J, Correll R L, Anderson R B. 1986. Distribution of cadmium, lead and zinc among the marine sediments, seagrasses and fauna and the selection of sentinel accumulators near a lead smelter in South Australia. Aust. J. Mar. Freshw. Res., 37: 567–585.CrossRefGoogle Scholar
  45. Ward T J. 1987. Temporal variation of metals in the seagrass Posidonia australis and its potential as a sentinel accumulator near a lead smelter. Mar. Biol., 95: 315–321.CrossRefGoogle Scholar
  46. Warnau M, Fowler S W, Teyssié J L. 1996. Biokinetics of selected heavy metals and radionuclides in two marine macrophytes: the seagrass Posidonia oceanica and the alga Caulerpa taxifolia. Mar. Environ. Res., 41: 343–362.CrossRefGoogle Scholar
  47. Waycott M, Duarte C M, Carruthers T J B, Orth R J, Dennison W C, Olyarnik S, Calladine A, Fourqurean J W, HeckJr K L, Hughes A R, Kendrick G A, Kenworthy W J, Short F T, Williams S L. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci., 106: 12 377–12 381.CrossRefGoogle Scholar
  48. Whelan T, Espinosa J, Villarreal X, Cotta-Goma M. 2005. Trace metal partitioning in Thalassia testudinum and sediments in the Lower Laguna Madre, Texas. Environ. Int., 31: 15–24.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Tropical Oceanography, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.Tropical Marine Biological Research Station in HainanChinese Academy of SciencesSanyaChina

Personalised recommendations