Skip to main content
Log in

Variation in Rubisco and other photosynthetic parameters in the life cycle of Haematococcus pluvialis

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Cells of Haematococcus pluvialis Flot. et Will were collected in four different growth phases. We quantified the initial and total enzyme activity of ribulose-1,5-bisphosphate carboxylase (Rubisco) in crude extracts, and the relative expression of large-subunit ribulose-1,5-bisphosphate caboxylase / oxygenase (rbcL) mRNA. We measured the ratio of photosynthetic rate to respiration rate (P/R), maximal effective quantum yield of photosystem II (F v/F m), electron transport rate (ETR), actual photochemical efficiency of PSII in the light (PSII), and non-photochemical quenching (NPQ). Green vegetative cells were found to be in the most active state, with a relatively higher P/R ratio. These cells also displayed the lowest NPQ and the highest F v/F m, ETR, and PSII, indicating the most effective PSII. However, both Rubisco activity and rbcL mRNA expression were the lowest measured. In orange resting cysts with relatively lower P/R and NPQ, Rubisco activity and rbcL expression reached a peak, while F v/F m, ETR, and ΦPSII were the lowest measured. Taking into account the methods of astaxanthin induction used in industry, we suggest that Rubisco may participate in astaxanthin accumulation in H. pluvialis. A continuous and sufficient supply of a carbon source such as CO2 may therefore aid the large scale production of astaxanthin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berman-Frank I, Dubinsky Z. 1999. Balanced growth in aquatic plants: myth or reality? BioScience, 49: 29–37.

    Article  Google Scholar 

  • Birnboim H C, Doly J. 1979. A rapid alkaline procedure for screening recombinant plasmid DNA. Nucleic Acids Res., 7: 1 513–1 523.

    Google Scholar 

  • Boussiba S, Vonshak A. 1991. Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol., 32: 1 077–1 082.

    Google Scholar 

  • Boussiba S. 2000. Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response. Physiol. Plantarum, 108: 111–117.

    Article  Google Scholar 

  • Brown M R, Dunstan G A, Norwood S J, Miller K A. 1996. Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J. Phycol., 32: 64–73.

    Article  Google Scholar 

  • Cleveland J S, Perry M J. 1987. Quantum yield, relative specific absorption and fluorescence in nitrogen-limited Chaetoceros gracilis. Mar. Biol., 94: 489–497.

    Article  Google Scholar 

  • Cunningham F X, Gantt E. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49: 557–583.

    Article  Google Scholar 

  • Dennis D, Blakeley S T. 2000. Energy-conserving reactions of glycolysis. In: Buchanan B, Gruissem W, Jones R eds. Biochemistry & Molecular Biology of Plants. Science Press, Beijing. p.667.

    Google Scholar 

  • Domínguez-Bocanegra A R, Legarreta I G, Jeronimo F M, Campocosio A T. 2004. Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Bioresour. Technol., 92: 209–214.

    Article  Google Scholar 

  • Enríquez S, Merino M, Iglesias-Prieto R. 2002. Variations in the photosynthetic performance along the leaves of the tropical seagrass Thalassia testudinum. Mar. Biol., 140: 891–900.

    Article  Google Scholar 

  • Fábregas J, Domínguez A, Álvareza D C, Lamela T, Otero A. 1998. Induction of astaxanthin accumulation by nitrogen and magnesium deficiencies in Haematococcus pluvialis. Biotechnol. Lett., 20: 623–626.

    Article  Google Scholar 

  • Ferreira I D, Rosário V E D, Cravo P V L. 2006. Real-time quantitative PCR with SYBR Green I detection for estimating copy numbers of nine drug resistance candidate genes in Plasmodium falciparum. Malaria. Journal, 5: 1.

    Article  Google Scholar 

  • Forster R M, Schubert H. 1997. Wavelength dependence of photoinhibition in the green alga Chlorella vulgaris. Photosynthetica, 33: 541–552.

    Google Scholar 

  • Gerard V A, Driscoll T. 1996. A spectrophotometric assay for Rubisco activity: application to the kelp Laminaria saccharina and implications for radiometric assays. J. Phycol., 32: 880–884.

    Article  Google Scholar 

  • Guerin M, Huntley M E, Olaizola M. 2003. Haematococcus astaxanthin; applications for human health and nutrition. Trends Biotechnol., 21: 210–216.

    Article  Google Scholar 

  • Gu W L, An G H, Johnson E A. 1997. Ethanol increases carotenoid production in Phaffia rhodozyma. J. Ind. Microbiol. Biotechnol., 19: 114–117.

    Article  Google Scholar 

  • Guillard R R L. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith W L, Chanley M H eds. Culture of marine invertebrate animals. Plenum Press, New York. p.26–60.

    Google Scholar 

  • Gygi S P, Rochon Y, Franza B R, Aebersold R. 1999. Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol., 19: 1 720–1 730.

    Google Scholar 

  • Hagen C, Grünewald K, Schmidt S, Müller J. 2000. Accumulation of secondary carotenoids in flagellates of Haematococcus pluvialis (Chlorophyta) is accompanied by an increase in per unit chlorophyll productivity of photosynthesis. Eur. J. Phycol., 35: 75–82.

    Article  Google Scholar 

  • Herrmann H, Häder D P, Köfferlein M, Seidlitz H K, Ghetti F. 1996. Effects of UV radiation on photosynthesis of phytoplankton exposed to solar simulator light. J. Photoch. Photobio. B, 34: 21–28.

    Article  Google Scholar 

  • Humphrey G F. 1975. The photosynthesis: respiration ratio of some unicellular marine algae. J. Exp. Mar. Biol. Ecol., 18: 111–119.

    Article  Google Scholar 

  • Kang C D, Lee J S, Park T H, Sim S J 2005. Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Appl. Microbiol. Biotechnol., 68: 237–241.

    Article  Google Scholar 

  • Kang C D, Lee J S, Park T H, Sim S J. 2007. Complementary limiting factors of astaxanthin synthesis during photoautotrophic induction of Haematococcus pluvialis: C/N ratio and light intensity. Appl. Microbiol. Biotechnol., 74: 987–994.

    Article  Google Scholar 

  • Katsuda T, Shimahara K, Shiraishi H, Yamagami K, Ranjbar R, Katoh S. 2006. Effect of flashing light from blue light emitting diodes on cell growth and astaxanthin production of Haematococcus pluvialis. J. Biosci. Bioeng., 102: 442–446.

    Article  Google Scholar 

  • Kobayashi M, Kakizono T, Nagai S. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl. Environ. Microbiol., 59: 867–873.

    Google Scholar 

  • Kobayashi M, Sakamoto Y. 1999. Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnol. Lett., 21: 265–269.

    Article  Google Scholar 

  • Liang Y, Beardall J, Heraud P. 2006. Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). J. Photoch. Photobio. B, 2: 161–172.

    Article  Google Scholar 

  • Lichtenthaler H K. 1999. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50: 47–66.

    Article  Google Scholar 

  • Lorenz R T, Cysewski G R. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol., 18: 160–167.

    Article  Google Scholar 

  • Linden H. 1999. Carotenoid hydroxylase from Haematococcus pluvialis: cDNA sequence, regulation and functional complementation. Biochim. Biophys. Acta, 1446: 203–212.

    Article  Google Scholar 

  • Malkin R, Niyogi K. 2000a. Overview of photosynthesis. In: Buchanan B, Gruissem W, Jones R eds. Biochemistry & Molecular Biology of Plants. Science Press, Beijing. p.570.

    Google Scholar 

  • Malkin R, Niyogi K. 2000b. Light absorption and energy conversion. In: Buchanan B, Gruissem W, Jones R eds. Biochemistry & Molecular Biology of Plants. Science Press, Beijing. p.579.

    Google Scholar 

  • Margalith P Z. 1999. Production of ketocarotenoids by microalgae. Appl. Microbiol. Biotechnol., 51: 431–438.

    Article  Google Scholar 

  • Mcallister C D, Shaw N, Strickland J D. 1964. Marine phytoplankton photosynthesis as a function of light intensity: A comparison of methods. J. Fish Res. Bd. Can., 21: 159–181.

    Article  Google Scholar 

  • Melis A, Melnicki M R. 2006. Integrated biological hydrogen production. Int. J. Hydrogen Energ., 31: 1 563–1 573.

    Article  Google Scholar 

  • Merino M, Enríĺquez S, Strasser R J, Iglesias-Prieto R. 1995. Spatial and diurnal variations in photosynthetic activity of the tropical seagrass Thalassia testudinum. In: Mathis P ed. Photosynthesis: from Light to Biosphere. Kluwer Academic Publishers, The Netherlands, Vol. 5. p.889–892.

    Google Scholar 

  • Mouget J L, Beeson R C, Legendre L, Noüe J D L. 1993. Inadequacy of Rubisco initial and total activities to account for observed rates of photosynthetic carbon dioxide assimilation by Scenedesmus orecnis. Eur. J. Phycol., 28: 99–106.

    Article  Google Scholar 

  • Nilawati J, Greenberg B M, Smith R E H. 1997. Influence of ultraviolet radiation on growth and photosynthesis of two cold ocean diatoms. J. Phycol., 33: 215–224.

    Article  Google Scholar 

  • Ralph P J, Macinnis-Ng C M O, Frankart C. 2005. Fluorescence imaging application: effect of leaf age on seagrass photokinetics. Aqu. at Bot., 81: 69–84.

    Article  Google Scholar 

  • Pichard S L, Campbell L, Kang J B, Tabita F R, Paul J H. 1996. Regulation of ribulose bisphosphate carboxylase gene expression in natural phytoplankton communities. I. Diel rhythms. Mar. Ecol. Prog. Ser., 139: 257–265.

    Article  Google Scholar 

  • Ryther J H. 1954. The ratio of photosynthesis to respiration in marine plankton algae and its effect on the measurement of productivity. Deep Sea Res., 2: 134–139.

    Google Scholar 

  • Schwender J, Goffman F, Ohlrogge J B, Shachar-Hill Y. 2004. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature, 432: 779–782.

    Article  Google Scholar 

  • Somerville C, Browse J, Jaworski J G, Ohlrogge J B. 2000. Fatty acid biosynthesis. In: Buchanan B, Gruissem W, Jones R eds. Biochemistry & Molecular Biology of Plants. Science Press, Beijing. p.467.

    Google Scholar 

  • Spreitzer R J. 1993. Genetic dissection of Rubisco structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol., 44: 411–434.

    Article  Google Scholar 

  • Sukenik A, Carmeli Y. 1990. Lipid synthesis and fatty acid composition in Nannochloropsis sp. (Eustigmatophyceae) growth in a light-dark cycle. J. Phycol., 26: 463–469.

    Article  Google Scholar 

  • Tabita F R. 1988. Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol. Rev., 52: 155–189.

    Google Scholar 

  • Tan S, Cunningham F X, Youmans M, Grabowski B, Sun Z, Gantt E. 1995. Cytochrome f loss in astaxanthin accumulating red cells of Haematococcus pluvialis (Chlorophyceae): Comparison of photosynthetic activity, photosynthetic enzymes and thylakoid membrane polypeptides in red and green cells. J. Phycol., 31: 897–905.

    Article  Google Scholar 

  • Torzillo G, Goksan T, Faraloni C, Kopecky J, Masojídek J. 2003. Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage. J. Appl. Phycol., 15: 127–136.

    Article  Google Scholar 

  • Torzillo G, Goksan T, Isik O, Gokpinar S. 2005. Photon irradiance required to support optimal growth and interrelations between irradiance and pigment composition in the green alga Haematococcus pluvialis. Eur. J. Phycol., 40: 233–240.

    Article  Google Scholar 

  • Wang B, Zarka A, Trebst A, Boussiba S. 2003. Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J. Phycol., 39: 1 116–1 124.

    Article  Google Scholar 

  • Wang S B, Hu Q, Sommerfeld M, Chen F. 2004. Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae). Proteomics, 4: 692–708.

    Article  Google Scholar 

  • Wawrik B, Paul J H, Tabita F R. 2002. Real-time PCR quantification of rbcL (Ribulose-1,5-bisphosphate carboxylase/oxygenase) mRNA in diatoms and pelagophytes. Appl. Environ. Microbiol., 68: 3 771–3 779.

    Article  Google Scholar 

  • Woodrow I E, Berry J A. 1988. Enzymatic regulation of photosynthetic CO2, fixation in C3 plants. Ann. Rev. Plant Physiol. Plant Mol. Biol., 39: 533–594.

    Article  Google Scholar 

  • Xu H H, Tabita F R. 1996. Ribulose-1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms. Appl. Environ. Microbiol., 62: 1 913–1 921.

    Google Scholar 

  • Yong Y Y R, Lee Y K. 1991. Do carotenoids play a photoprotective role in the cytoplasm of Haematococcus lacustris (Chlorophyta)? J. Phycol., 30: 257–261.

    Article  Google Scholar 

  • Yuan J P, Chen F. 1999. Hydrolysis kinetics of astaxanthin esters and stability of astaxanthin of Haematococcus pluvialis during saponification. J. Agric. Food Chem., 47: 31–35.

    Article  Google Scholar 

  • Yuan J P, Chen F. 2000. Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strain of the microalga Haematococcus pluvialis. Food Chem., 68: 443–448.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangce Wang  (王广策).

Additional information

Supported by the National Basic Projects for Science and Technology (No. SQ2012FY4910019-1), the Project of Science and Technology for Supporting Tianjin Development (No. 10ZCKFSH0070), and the Project for Developing Marine Economy by Science and Technology in Tianjin (KX2010-0005)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Wang, G. & Niu, J. Variation in Rubisco and other photosynthetic parameters in the life cycle of Haematococcus pluvialis . Chin. J. Ocean. Limnol. 30, 136–145 (2012). https://doi.org/10.1007/s00343-012-1060-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-012-1060-8

Keyword

Navigation