Skip to main content
Log in

Differences in MITF gene expression and histology between albino and normal sea cucumbers (Apostichopus japonicus Selenka)

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Albino Apostichopus japonicus occur both in the wild and in captivity. The offspring of albino A. japonicus also suffer from albinism. The formation of melanin in the melanocytes is dependant on microphthalmia-associated transcription factor (MITF). To investigate the role of MITF in controlling albinism, we cloned the full-length MITF cDNA from A. japonicus and compared MITF mRNA expression in albino and normal A. japonicus. In addition, we used light and electron microscopy to compare histological samples of normal and albino A. japonicus. The body wall of albino adults was characterized by significantly lower levels of MITF expression and lower numbers of epidermal melanocytes, which also contained less melanin. In albino juvenile offspring, MITF expression levels were significantly lower 32 d after fertilization and there were fewer, and less developed, epidermal melanocytes. Thus, we conclude that albino A. japonicus have fewer melanocytes and a reduced ability to synthesize melanin, likely because of lower expression of MITF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aberdam E, Bertolotto C, Sviderskaya E V, Thillot V, Hemesath T J, Fisher D E, Bennett D C, Ortonne J P, Ballotti R. 1998. Involvement of microphthalmia in the inhibition of melanocyte lineage differentiation and of melanogenesis by agouti signal protein. J. Biol. Chem., 273: 19 560–19 565.

    Article  Google Scholar 

  • Amiel J, Watkin P M, Tassabehji M, Read A P, Winter R M. 1998. Mutation of the MITF gene in albinism-deafness syndrome (Tietz syndrome). Clin. Dysmorphol., 7: 17–20.

    Article  Google Scholar 

  • Arthur J K, Kathleen A T, John J G. 2005. Effect of sunlight intensity and albinism on the covering response of the Caribbean sea urchin Tripneustes ventricosus. Mar. Biol., 146: 1 111–1 117.

    Google Scholar 

  • Barbosa A J A, Castro L P F, Margarida A, Nogueira M F. 1984. A simple and economical modification of the masson-fontana method for staining melanin granules and enterochromaffin cells. Stain Tech., 59: 193–196.

    Google Scholar 

  • Colin R G. 2007. Melanocytes: The new Black. Int. J. Biochem. Cell Biol., 39: 275–279.

    Article  Google Scholar 

  • Fukuzawa T, Ide H. 1986. Further studies on the melanophores of periodic albino mutant of Xenopus laevis. J. Embryol. Exp. Morph., 91: 65–78.

    Google Scholar 

  • Gaitanis G, Chasapi V, Velegraki A. 2005. Novel application of the Masson-Fontana stain for demonstrating Malassezia species melanin-like pigment production in vitro and in clinical specimens. J. Clin. Microbiol., 43: 4 147–4 151.

    Article  Google Scholar 

  • Guo H, Huang B, Qi F, Zhang S. 2007. Distribution and ultrastructure of pigment cells in the skins of normal and albino adult turbot, Scophthalmus maximus. Chin. J. Oceanol. Limnol., 25: 199–208.

    Article  Google Scholar 

  • Hyman L H. 1955. The Invertebrates: Echinodermata. McGraw-Hill Press, New York.

    Google Scholar 

  • Ichiro Y, Kosuke E, Shigeru S, Reiko T, Hiroshi W, Shigeki S, Takaharu N, Kazuho I, Takashi G, Colin R G, Hiroaki Y. 2003. Cloning and functional analysis of ascidian Mitf in vivo: insights into the origin of vertebrate pigment cells. Mech. Dev., 120: 1 489–1 504.

    Google Scholar 

  • Jiri V, Jan B. 2010. “Transcription physiology” of pigment formation in melanocytes: central role of MITF. Exp. Derm., 19: 617–627.

    Article  Google Scholar 

  • Kazuhisa T, Clifford T, Ichiro K, Atsushi W, Yoshitaka N, David E F, Masayoshi T. 2000. Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance. Hum. Mol. Genet., 9: 125–132.

    Article  Google Scholar 

  • Levy C, Khaled M, Fisher D E. 2006. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med., 12: 406–414.

    Article  Google Scholar 

  • Nakayama A, Nguyen M T, Chen C C, Opdecamp K, Hodgkinson C A, Arnheiter H. 1998. Mutations in microphthalmia, the mouse homolog of the human deafness gene MITF, affect neuroepithelial and neural crest-derived melanocytes differently. Mech. Dev., 70: 155–166.

    Article  Google Scholar 

  • Nolan M R, Robert S Jr. 1990. Autosomal albinism affects immunocompetence in the chicken. Devel. Comp. Immunol., 14: 105–112.

    Article  Google Scholar 

  • Opdecamp K, Nakayama A, Nguyen M T, Hodgkinson C A, Pavan W J, Arnheiter H. 1997. Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. Devel., 124: 2 377–2 386.

    Google Scholar 

  • Seldenrijk R, Huijsman K G H, Heussen A M A, Vandeveerdonk F C G. 1982. A comparative ultrastructural and physiological study on melanophores of wild-type and periodic albino mutants of xenopus-laevis. Cell Tissue Res., 222: 1–9.

    Article  Google Scholar 

  • Spritz R A, Chiang P W, Oiso N, Alkhateeb A. 2003. Human and mouse disorders of pigmentation. Curr. Opin. Gen. Devel., 13: 284–289.

    Article  Google Scholar 

  • Takeda K, Yasumoto K, Takada R, Takada S, Watanabe K, Udono T, Saito H, Takahashi K, Shibahara S. 2000. Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J. Biol. Chem., 275: 14 013–14 016.

    Google Scholar 

  • Tassabehji M, Newton V E, Read A P. 1994. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nature Genet., 8: 251–255.

    Article  Google Scholar 

  • Tassabehji M, Newton V E, Liu X Z, Brady A, Donnai D, Krajewska-Walasek M, Murday V, Norman A, Obersztyn E, Rice J C. 1995. The mutational spectrum in Waardenburg syndrome. Hum. Mol. Genet., 4: 2 131–2 137.

    Article  Google Scholar 

  • Wang J, Hou L, Zhang R, Zhao X, Jiang L, Sun W, An J, Li X. 2007. The tyrosinase gene family and albinism in fish. Chin. J. Oceanol. Limnol., 25: 191–198.

    Article  Google Scholar 

  • Wasmeier C, Hume A N, Bolasco G, Seabra M C. 2008. Melanosomes at a glance. J. Cell. Sci., 121: 3 995–3 999.

    Article  Google Scholar 

  • William S O. 2000. The tyrosinase gene and Oculocutaneous Albinism Type 1 (OCA1): a model for understanding the molecular biology of melanin formation. Pigm. Cell. Res., 13: 320–325.

    Article  Google Scholar 

  • Yang H, Yuan X, Zhou Y, Mao Y, Zhang T, Liu Y. 2005. Effects of body size and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicus (Selenka) with special reference to aestivation. Aquac. Res., 36: 1 085–1 092.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongsheng Yang  (杨红生).

Additional information

Supported by the National Natural Science Foundation of China (No. 40976089), the National Marine Public Welfare Research Project (No. 200805069), the National Science and Technology Support Program of China (No. 2011BAD13B02), and the Breeding Project of Shandong Province (China)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Yang, H., Zhao, H. et al. Differences in MITF gene expression and histology between albino and normal sea cucumbers (Apostichopus japonicus Selenka). Chin. J. Ocean. Limnol. 30, 80–91 (2012). https://doi.org/10.1007/s00343-012-1043-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-012-1043-9

Keyword

Navigation