Abstract
Cyanobacterial blooms in eutrophic freshwater systems are a worldwide problem, creating adverse effects for many aquatic organisms by producing toxic microcystins and deteriorating water quality. In this study, microcystins (MCs) in Microcystis aeruginosa, and Daphnia magna exposed to M. aeruginosa, were analyzed by HPLC-MS, and the effects of M. aeruginosa on D. magna were investigated. When D. magna was exposed to M. aeruginosa for more than 2 h, Microcystin-LR (MC-LR) was detected. When exposed to 1.5 × 106, 3 × 106, 0.75 × 107, and 1.5 × 107 cell/mL of M. aeruginosa for 96 h, average survival of D. magna for treatments were 23.33%, 33.33%, 13.33%, 16.67%, respectively, which were significantly lower than the average 100% survival in the control group (P < 0.05). The adverse effects of M. aeruginosa on body length, time for the first brood, brood numbers, gross fecundity, lifespan, and population growth of D. magna were density-dependent. These results suggest that the occurrence of M. aeruginosa blooms could strongly inhibit the population growth of D. magna through depression of survival, individual growth and gross fecundity. In the most serious situations, M. aeruginosa blooms could undermine the food web by eliminating filter-feeding zooplankton, which would destroy the ecological balance of aquaculture water bodies.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
Chen J, Ren C, Cai X. 1995. Studies on control of excessive phytoplankton growth by macrozooplankton. Acta Scientiarum Naturalium, Universitalis Pekinensis, 31(3): 373–382. (in Chinese with English abstract)
Chen T, Liu J, Li S, He P. 2009. Gonyautoxin: HPLC-MS detection and accumulation in marine organisms. Oceanologia et Limnologia Sinica, 40(1): 88–93. (in Chinese with English abstract)
Dell A C, Eaglesham G K, Quillian M A. 2004. Analysis of cyanobacterial toxins by hydrophilic interaction liquid chromatography mass spectrometry. Journal of Chromatography A, 1 028(1): 155–164.
Fulton R S I, Paerl H W. 1988. Effects of the blue-green alga Microcystis aeruginosa on zooplankton competitive relations. Oecologia, 76(3): 383–389.
Gérard C, Poullain V, Lance E, Acou A, Brient L, Carpentier A. 2009. Influence of toxic cyanobacteria on community structure and microcystin accumulation of freshwater molluscs. Environmental Pollution, 157(2): 609–617.
Guo N, Xie P. 2006. Development of tolerance against toxic Microcystis aeruginosa in three cladocerans and the ecological implications. Environmental Pollution, 143(3): 513–518.
Jang M H, Ha K, Takamura N. 2008. Microcystin production by Microcystis aeruginosa exposed to different stages of herbivorous zooplankton. Toxicon, 51(5): 882–889.
Laurent D, Kerbrat A, Darius H T, Girard E, Golubic S, Benoit E, Sauviat M, Chinain M, Molgo J, Pauillac S. 2008. Are cyanobacteria involved in Ciguatera Fish Poisoning-like outbreaks in New Caledonia? Harmful Algae, 7(6): 827–838.
Ma L. 2007. Progress in microcystins measurement detection technique and pollution control technology study. Changzhou Institute of Light Industry Technology, (3): 15–19. (in Chinese with English abstract)
Magalhães V F, Marinho M M, Domingos P, Oliveira A C, Costa S M, Azevedo L O, Azevedo S M F O. 2003. Microcystins (cyanobacteria hepatotoxins) bioaccumulation in fish and crustaceans from Sepetiba Bay (Brasil, RJ). Toxicon, 42(3): 285–295.
Malbrouck C, Trausch G, Devos P, Kestemont P. 2003. Hepatic accumulation and effects of microcystin-LR on juvenile goldfish Carassius auratus L. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 135(1): 39–48.
Martins J, Teles L O, Vasconcelos V. 2007. Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Environment International, 33(3): 414–425.
Mohamed Z A. 2008. Toxic cyanobacteria and cyanotoxins in public hot springs in Saudi Arabia. Toxicon, 51(1): 17–27.
Oikawa H, Fujita T, Satomi M, Suzuki T, Kotani Y, Yano Y. 2002. Accumulation of paralytic shellfish poisoning toxins in the edible shore crab Telmessus acutidens. Toxicon, 40(11): 1 593–1 599.
Orr P T, Jones G J, Hunter R A, Berger K. 2003. Exposure of beef cattle to sub-clinical doses of Microcystis aeruginosa: toxin bioaccumulation, physiological effects and human health risk assessment. Toxicon, 41(5): 613–620.
Shen P P, Shi Q, Hua Z C, Kong F X, Wang Z G, Zhuang S X, Chen D C. 2003. Analysis of microcystins in cyanobacteria blooms and surface water samples from Meiliang Bay, Taihu Lake, China. Environment International, 29(5): 641–647.
Tsuruda K, Arakawa O, Kawatsu K, Hamano Y, Takatani T, Noguchi T. 2002. Secretory glands of tetrodotoxin in the skin of the Japanese newt Cynops pyrrhogaster. Toxicon, 40(2): 131–136.
Vale P, Bire R, Hess P. 2008. Confirmation by LC-MS/MS of azaspiracids in shellfish from the Portuguese north-western coast. Toxicon, 51(8): 1 449–1 456.
Vasconcelos V, Oliveira S, Teles F O. 2001. Impact of a toxic and a non-toxic strain of Microcystis aeruginosa on the crayfish Procambarus clarkia. Toxicon, 39(10): 1 461–1 470.
Vieira J M, Azevedo M T, Azevedo S M, Honda R Y, Corrêa B. 2005. Toxic cyanobacteria and microcystin concentrations in a public water supply reservoir in the Brazilian Amazonia region. Toxicon, 45(7): 901–909.
Villarroel M J, Sancho E, Ferrando M D, Andreu E, 2003. Acute, chronic and sublethal effects of the herbicide propanil on Daphnia magna. Chemosphere, 53(8): 857–864.
Wang L, Cheng Y, Wu X, Dou Y, Chen S, Lü Y. 2006. Effects of Microcystis viridis and other different feeding conditions on growth and lipid composition of Daphnia magna. Journal of Fisheries of China, 30(6): 843–847. (in Chinese with English abstract)
Yin L, Huang J, Li W, Liu Y. 2006. Microcystin-RR-induced apoptosis in tobacco BY-2 cells. Toxicon, 48(2): 204–210.
Zhang Q, Yu R, Zhou M, Wang Y, Yan T, Li J. 2005. Effects of four nitrogen substrates on growth and toxin production of Alexandrium minutum (Dinophyceae). Acta Oceanologica Sinica, 27(6): 138–145. (in Chinese with English abstract)
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the Aquaculture and Fisheries Collaborative Research Support Program of USAID (No. 1366), the Shanghai Rising-Star Program (No. 08QA1405900), the Innovation Program of Shanghai Municipal Education Commission (No. 09YZ277), and the Shanghai Leading Academic Discipline Project (No. Y1101)
Rights and permissions
About this article
Cite this article
Liu, L., Li, K., Chen, T. et al. Effects of Microcystis aeruginosa on life history of water flea Daphnia magna . Chin. J. Ocean. Limnol. 29, 892–897 (2011). https://doi.org/10.1007/s00343-011-0518-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00343-011-0518-4