Impact of redox-stratification on the diversity and distribution of bacterial communities in sandy reef sediments in a microcosm

  • Zheng Gao (高峥)
  • Xin Wang (王鑫)
  • Angelos K. Hannides
  • Francis J. Sansone
  • Guangyi Wang (汪光义)


Relationships between microbial communities and geochemical environments are important in marine microbial ecology and biogeochemistry. Although biogeochemical redox stratification has been well documented in marine sediments, its impact on microbial communities remains largely unknown. In this study, we applied denaturing gradient gel electrophoresis (DGGE) and clone library construction to investigate the diversity and stratification of bacterial communities in redox-stratified sandy reef sediments in a microcosm. A total of 88 Operational Taxonomic Units (OTU) were identified from 16S rRNA clone libraries constructed from sandy reef sediments in a laboratory microcosm. They were members of nine phyla and three candidate divisions, including Proteobacteria (Alpha-, Beta-, Gamma-, Delta-, and Epsilonproteobacteria), Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Verrucomicrobia, Spirochaetes, and the candidate divisions WS3, SO31 and AO19. The vast majority of these phylotypes are related to clone sequences from other marine sediments, but OTUs of Epsilonproteobacteria and WS3 are reported for the first time from permeable marine sediments. Several other OTUs are potential new bacterial phylotypes because of their low similarity with reference sequences. Results from the 16S rRNA, gene clone sequence analyses suggested that bacterial communities exhibit clear stratification across large redox gradients in these sediments, with the highest diversity found in the anoxic layer (15–25 mm) and the least diversity in the suboxic layer (3–5 mm). Analysis of the nosZ, and amoA gene libraries also indicated the stratification of denitrifiers and nitrifiers, with their highest diversity being in the anoxic and oxic sediment layers, respectively. These results indicated that redox-stratification can affect the distribution of bacterial communities in sandy reef sediments.


bacterial diversity bacterial stratification biogeochemical gradients sandy reef sediments 


  1. Alain K, Olagnon M, Desbruyeres D, Page A, Barbier G, Juniper S K, Querellou J, Cambon-Bonavita M. 2002. Phylogenetic characterization of the bacterial assemblage associated with mucous. secretions of the hydrothermal vent polychaete Paralvinella palmiformis. FEMS Microbiol. Ecol., 42: 463–476.CrossRefGoogle Scholar
  2. Beman J M, Francis C A. 2006. Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahia del Tobari, Mexico. Appl. Environ. Microbiol., 72: 7 767–7 777.CrossRefGoogle Scholar
  3. Berlanga M III, Guerrero R, Aas J A, Paster B J. 2003. Spirochetal diversity in microbial mats. Abst. Gener. Meet. Amer. Soc. Microbiol., 103: N–120.Google Scholar
  4. Bowman J P, McCuaig R D. 2003. Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl. Environ. Microbiol., 69: 2 463–2 483.Google Scholar
  5. Brandes J A, Devol A H, Deutsch C. 2007. New developments in the marine nitrogen cycle. Chem. Rev., 107: 577–589.CrossRefGoogle Scholar
  6. Briee C, Moreira D, Lopez-Garcia P. 2007. Archaeal and bacterial community composition of sediment and plankton from a suboxic freshwater pond. Res. Microbiol., 158: 213–227.CrossRefGoogle Scholar
  7. Buhring S I, Elvert M, Witte U. 2005. The microbial community structure of different permeable sandy sediments characterized by the investigation of bacterial fatty acids and fluorescence in situ hybridization. Environ. Microbiol., 7: 281–293.CrossRefGoogle Scholar
  8. Burdige D J. 2006. Geochemistry of Marine Sediments. Princeton, New Jersey: Princeton University Press.Google Scholar
  9. Canfield D E, Jorgensen B B, Fossing H, Glud R, Gundersen J, Ramsing N B. Thamdrup B, Hansen J W, Nielsen L P, Hall P O. 1993. Pathways of organic-carbon oxidation in 3 continental-margin sediments. Mar. Geol., 113: 27–40.CrossRefGoogle Scholar
  10. Edlund A, Hardeman F, Jansson J K, Sjoling S. 2008. Active bacterial community structure along vertical redox gradients in Baltic sea sediment. Environ. Microbiol., 10: 2 051–2 063.CrossRefGoogle Scholar
  11. Falkowski P G, Fenchel T, Delong E F. 2008. The microbial engines that drive Earth’s biogeochemical cycles. Science, 320: 1 034–1 039.CrossRefGoogle Scholar
  12. Freitag T E, Prosser J I. 2003. Community structure of ammonia-oxidizing bacteria within anoxic marine sediments. Appl. Environ. Microbiol., 69: 1 359–1 371.CrossRefGoogle Scholar
  13. Gao Z, Li B L, Zheng C C, Wang G Y. 2008. Molecular detection of fungal communities in the Hawaiian Marine sponges Suberites zeteki and Mycale armata. Appl. Environ. Microbiol., 74: 6 091–6 101.Google Scholar
  14. Good I J. 1953. The population frequencies of species and the estimation of population parameters. Biometrika, 40: 237–264.Google Scholar
  15. Gurtler V, Stanisich V A. 1996. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology, 142: 3–16.CrossRefGoogle Scholar
  16. Hall T A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp. Ser., 41: 95–98.Google Scholar
  17. Hannides A K. 2008. Organic matter cycling and nutrient dynamics in mairne sediments. In: Oceanography. University of Hawaii at Manoa. Honolulu. p.407.Google Scholar
  18. Harris J K, Kelley S T, Pace N R. 2004. New perspective on uncultured bacterial phylogenetic division OP11. Appl. Environ. Microbiol., 70: 845–849.CrossRefGoogle Scholar
  19. Hebert A B, Sansone F J, Pawlak G R. 2007. Tracer dispersal in sandy sediment porewater under enhanced physical forcing. Cont. Shelf Res., 27: 2 278–2 287.CrossRefGoogle Scholar
  20. Heijs S K, Haese R R, van der Wielen P, Forney L J, van Elsas J D. 2007. Use of 16S rRNA gene based clone libraries to assess microbial communities potentially involved in anaerobic methane oxidation in a Mediterranean cold seep. Microbial Ecol., 53: 384–398.CrossRefGoogle Scholar
  21. Heise S, Gust G. 1999. Influence of the physiological status of bacteria on their transport into permeable sediments. Mar. Ecol. Prog. Ser., 190: 141–153.CrossRefGoogle Scholar
  22. Hewson I, Fuhrman J A. 2006. Spatial and vertical biogeography of coral reef sediment bacterial and diazotroph communities. Mar. Ecol. Prog. Ser., 306: 79–86.CrossRefGoogle Scholar
  23. Hirayama H, Sunamura M, Takai K, Nunoura T, Noguchi T, Oida H, Furushima Y, Yamamoto H, Oomori T, Horikoshi K. 2007. Culture-dependent and -independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island, Japan. Appl. Environ. Microbiol., 73: 7 642–7 656.CrossRefGoogle Scholar
  24. Holmes A J, Tujula N A, Holley M, Contos A, James J M, Rogers P, Gillings M R. 2001. Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ. Microbiol., 3: 256–264.CrossRefGoogle Scholar
  25. Horn M A, Drake H L, Schramm A. 2006. Nitrous oxide reductase genes (nosZ) of denitrifying microbial populations in soil and the earthworm gut are phylogenetically similar. Appl. Environ. Microbiol., 72: 1 019–1 026.Google Scholar
  26. Huber J A, Johnson H P, Butterfield D A, Baross J A. 2006. Microbial life in ridge flank crustal fluids. Environ. Microbiol., 8: 88–99.CrossRefGoogle Scholar
  27. Hunter E M, Mills H J, Kostka J E. 2006. Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Appl. Environ. Microbiol., 72: 5 689–5 701.Google Scholar
  28. Isenbarger T A, Finney M, Rios-Velazquez C, Handelsman J, Ruvkun G. 2008. Miniprimer PCR, a new lens for viewing the microbial world. Appl. Environ. Microbiol., 74: 840–849.CrossRefGoogle Scholar
  29. Jorgensen B B, Boetius A. 2007. Feast and famine-microbial life in the deep-sea bed. Nature Rev. Microbiol., 5: 770–781.CrossRefGoogle Scholar
  30. Lane D J, Field K G, Olsen G J, Pace N R. 1988. Reverse transcriptase sequencing of ribosomal RNA for phylogenetic analysis. Method Enzymol., 167.Google Scholar
  31. Llobet-Brossa E, Rossello-Mora R, Amann R. 1998. Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl. Environ. Microbiol., 64: 2 691–2 696.Google Scholar
  32. Llobet-Brossa E, Rabus R, Bottcher M E, Konneke M, Finke N, Schramm A. Meyer R L, Grötzschel S, Rosselló-Mora R, Amann R. 2002. Community structure and activity of sulfate-reducing bacteria in an intertidal surface sediment: a multi-method approach. Aquat. Microb. Ecol., 29: 211–226.CrossRefGoogle Scholar
  33. Loesekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R. 2007. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Appl. Environ. Microbiol., 73: 3 348–3 362.Google Scholar
  34. Mills H J, Hodges C, Wilson K, MacDonald I R, Sobecky P A. 2003. Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiol. Ecol., 46: 39–52.CrossRefGoogle Scholar
  35. Mills H J, Hunter E, Humphrys M, Kerkhof L, McGuinness L, Huettel M, Kostka J E. 2008. Characterization of nitrifying, denitrifying, and overall bacterial communities in permeable marine sediments of the Northeastern Gulf of Mexico. Appl. Environ. Microbiol., 74: 4 440–4 453.CrossRefGoogle Scholar
  36. Mullins T D, Britschgi T B, Krest R L, Giovannoni S J. 1995. Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol. Oceanogr., 40: 148–158.CrossRefGoogle Scholar
  37. Musat N, Werner U, Knittel K, Kolb S, Dodenhof T, van Beusekom J E E, de Beer D, Dubilier N, Amann R. 2006. Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Romo Basin, Wadden Sea. Syst. Appl. Microbiol., 29: 333–348.CrossRefGoogle Scholar
  38. Nakatsu C H. 2007. Soil microbial community analysis using denaturing gradient gel electrophoresis. Soil Sci. Soc. Am. J., 71: 562–571.CrossRefGoogle Scholar
  39. Nesbo C L, Boucher Y, Dlutek M, Doolittle W F. 2005. Lateral gene transfer and phylogenetic assignment of environmental fosmid clones. Environ. Microbiol., 7: 2 011–2 026.CrossRefGoogle Scholar
  40. Nogales B, Timmis K N, Nedwell D B, Osborn A M. 2002. Detection and diversity of expressed denitrification genes in estuarine sediments after reverse transcription-PCR amplification from mRNA. Appl. Environ. Microbiol., 68: 5 017–5 025.CrossRefGoogle Scholar
  41. O’Mullan G D, Ward B B. 2005. Relationship of temporal and spatial variabilities of ammonia-oxidizing bacteria to nitrification rates in Monterey Bay, California. Appl. Environ. Microbiol., 71: 697–705.CrossRefGoogle Scholar
  42. Philippot L. 2002. Denitrifying genes in bacterial and archaeal genomes. Bioch. Biophy. Acta, 1 577: 355–376.Google Scholar
  43. Rasheed M, Badran M I, Huettel M. 2003. Influence of sediment permeability and mineral composition on organic matter degradation in three sediments from the Gulf of Aqaba, Red Sea. Estuar. Coast. Shelf Sci., 57: 369–384.CrossRefGoogle Scholar
  44. Rasheed M, Wild C, Franke U, Huettel M. 2004. Benthic photosynthesis and oxygen consumption in permeable carbonate sediments at Heron Island, Great Barrier Reef, Australia. Estuar. Coast. Shelf Sci., 59: 139–150.CrossRefGoogle Scholar
  45. Rotthauwe J H, Witzel K P, Liesack W. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol., 63: 4 704–4 712.Google Scholar
  46. Rusch A, Huettel M, Reimers C E, Taghon G L, Fuller C M. 2003. Activity and distribution of bacterial populations in Middle Atlantic Bight shelf sands. FEMS Mocrobiol. Ecol., 44: 89–100.CrossRefGoogle Scholar
  47. Sahan E, Muyzer G. 2008. Diversity and spatio-temporal distribution of ammonia-oxidizing Archaea and Bacteria in sediments of the Westerschelde estuary. FEMS Microbiol. Ecol., 64: 175–186.CrossRefGoogle Scholar
  48. Sansone F J, Tribble G W, Andrews C C, Chanton J P. 1990. Anaerobic diagenesis within Recent, Pleistocene, and Eocene marine carbonate frameworks. Sedimentology, 37: 997–1 009.CrossRefGoogle Scholar
  49. Sansone F J, Pawlak G, Stanton T P, McManus M A, Glazer B T, Decarlo E H. 2008. Kilo Nalu Physical/biogeochemical dynamics above and within permeable sediments. Oceanography, 21: 173–178.CrossRefGoogle Scholar
  50. Santelli C M, Orcutt B N, Banning E, Bach W, Moyer C L, Sogin M L, Staudigel H, Edwards K J. 2008. Abundance and diversity of microbial life in ocean crust. Nature, 453: 653–656.CrossRefGoogle Scholar
  51. Scala D J, Kerkhof L J. 1998. Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiol. Lett., 162: 61–68.CrossRefGoogle Scholar
  52. Scala D J, Kerkhof L J. 1999. Diversity of nitrous oxide reductase (nosZ) genes in continental shelf sediments. Appl. Environ. Microbiol., 65: 1 681–1 687.Google Scholar
  53. Scala D J, Kerkhof L J. 2000. Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis. Appl. Environ. Microbiol., 66: 1 980–1 986.CrossRefGoogle Scholar
  54. Schafer H, Muyzer G. 2001. Denaturing gradient gel electrophoresis (DGGE) in marine microbial ecology. In: Paul J H ed. Methods in Microbiology, Marine Microbiology. Academic Press, New York. p.425–468.Google Scholar
  55. Schloss P D, Handelsman J. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol., 71: 1 501–1 506.CrossRefGoogle Scholar
  56. Schloss P D, Larget B R, Handelsman J. 2004. Integration of microbial ecology and statistics: a test to compare gene libraries. Appl. Environ. Microbiol., 70: 5 485–5 492.CrossRefGoogle Scholar
  57. Schroeder J H, Purser B H eds. 1986. Reef Diagenesis. Berlin: Springer-Verlag.Google Scholar
  58. Shimeta J, Starczak V R, Ashiru O M, Zimmer C A. 2001. Influences of benthic boundary-layer flow on feeding rates of ciliates and flagellates at the sediment-water interface. Limnol. Oceanogr., 46: 1 709–1 719.CrossRefGoogle Scholar
  59. Simoni S F, Bosma T N P, Harms H, Zehnder A J B. 2000. Bivalent cations increase both the subpopulation of adhering bacteria and their adhesion efficiency in sand columns. Environ. Sci. Technol., 34: 1 011–1 017.CrossRefGoogle Scholar
  60. Sørensen K B, Glazer B, Hannides A, Gaidos E. 2007. Spatial structure of the microbial community in sandy carbonate sediment. Mar. Ecol. Prog. Ser., 346: 61–74.CrossRefGoogle Scholar
  61. Strom S L. 2008. Microbial ecology of ocean biogeochemistry: A community perspective. Science, 320: 1 043–1 045.CrossRefGoogle Scholar
  62. Thamdrup B, Fossing H, Jorgensen B B. 1994. Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim. Cosmochim. Acta, 58: 5 115–5 129.Google Scholar
  63. Turner S, Pryer K M, Miao V P W, Palmer J D. 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small submit rRNA sequence analysis. J. Eukaryot. Microbiol., 46: 327–338.CrossRefGoogle Scholar
  64. Urakawa H, Yoshida T, Nishimura M, Ohwada K. 2000. Characterization of depth-related population variation in microbial communities of a coastal marine sediment using 16S rDNA-based approaches and quinone profiling. Environ. Microbiol., 2: 542–554.CrossRefGoogle Scholar
  65. Urakawa H, Tajima Y, Numata Y, Tsuneda S. 2008. Low temperature decreases the phylogenetic diversity of ammonia-oxidizing archaea and bacteria in aquarium biofiltration systems. Appl. Environ. Microbiol., 74: 894–900.CrossRefGoogle Scholar
  66. Van Raaphorst W, Malschaert H, Van Haren H. 1998. Tidal resuspension and deposition of particulate matter in the Oyster Grounds, North Sea. J. Mar. Res., 56: 257–291.CrossRefGoogle Scholar
  67. von Wintzingerode F, Selent B, Hegemann W, Gobel U B. 1999. Phylogenetic analysis of an anaerobic, trichlorobenzene transforming microbial consortium. Appl. Environ. Microbiol., 65: 283–286.Google Scholar
  68. von Wintzingerode F, Landt O, Ehrlich A, Gobel U B. 2000. Peptide nucleic acid-mediated PCR clamping as a useful supplement in the determination of microbial diversity. Appl. Environ. Microbiol., 66: 549–557.CrossRefGoogle Scholar
  69. Wild C, Laforsch C, Huettel M. 2006. Detection and enumeration of microbial cells within highly porous calcareous reef sands. Mar. Freshwater Res., 57: 415–420.CrossRefGoogle Scholar
  70. Wild C, Huettel M, Klueter A, Kremb S G, Rasheed M Y M, Jorgensen B B. 2004. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature, 428: 66–70.CrossRefGoogle Scholar
  71. Xu H X, Wu M, Wang X G, Yang J, Wang C S. Bacterial diversity in deep-sea sediment from northeastern Pacific Ocean. Acta Ecol. Sin., 28: 479–485.Google Scholar
  72. Zhang W, Ki J S, Qian P Y. 2008. Microbial diversity in polluted harbor sediments I: Bacterial community assessment based on four clone libraries of 16S rDNA. Estuar. Coast. Shelf Sci., 76: 668–681.CrossRefGoogle Scholar
  73. Zhu P, Li Q, Wang G. 2008. Unique microbial signatures of the alien hawaiian marine sponge Suberites zeteki. Microbial Ecol., 55: 406–414.CrossRefGoogle Scholar
  74. Zumft W G. 1997. Cell Biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev., 61: 533–616.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Zheng Gao (高峥)
    • 1
  • Xin Wang (王鑫)
    • 2
  • Angelos K. Hannides
    • 2
  • Francis J. Sansone
    • 2
  • Guangyi Wang (汪光义)
    • 2
    • 3
  1. 1.State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTai’anChina
  2. 2.Department of OceanographyUniversity of HawaiiHonoluluUSA
  3. 3.Shenzhen Engineering Laboratory for Algal Biofuel Technology Development and Application, School of Environment and EnergyPeking University Shenzhen Graduate SchoolShenzhenChina

Personalised recommendations