Skip to main content

Advertisement

Log in

Laboratory study on the ecological impact of sophorolipid used for harmful algae elimination

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

We studied the role of sophorolipid in inhibiting harmful algae bloom (HAB). Different sophorolipid concentrations were tested on marine microalgae, zooplankton, fish, and bivalve (Mytilus edulis) in laboratory. The result shows that sophorolipid could inhibit the growth of algal species selectively. Among three algae species selected, Platymonas helgolandica var. tsingtaoensis was promoted with increasing sophorolipid concentration; Isochrysis galbana was inhibited seven days later in sophorolipid concentration below 40 mg/L; and Nitzschia closterium f. minutissima was inhibited obviously in only a high sophorolipid concentration over 20 mg/L. Therefore, sophorolipid in a low concentration at <20 mg/L could remove certain harmful algae species effectively without harming other non-harmful microalgae. For other animals, sophorolipid could inhibit the growth of ciliate Strombidium sp. by 50% at 20 mg/L sophorolipid concentration after 96 h. The concentration in 96-h LC50 for Calanus sinicus, Neomysis awatschensis, Lateolabrax japonicus, and Paralichthys olivaceus was 15, 150, 60, and 110 mg/L, respectively. The 24 h LC50 value for Artemia salina was 600 mg/L. The relative clearance rate of mussel Mytilus edulis decreased to 80%, 40%, and 20% of the control group after being exposed to 20, 50, and 100 mg/L sophorolipid for 24 h. Therefore, the toxicity for mitigation of harmful algae bloom at previously recommended concentration of 5–20 mg/L sophorolipid is low for most tested organisms in this reaserch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson D M. 1989. Toxic algal blooms: a global perspective. In: Okaichi T, Anderson D M, Nemoto T eds. Red Tides: Biology, Environmental Science and Toxicology. Elsevier, New York. p. 11–16.

    Google Scholar 

  • Artoxkit M. 1990. Artemia toxicity screening test for estuarine and marine waters. Standard Operational Procedure. Creasel, Deinze, Belgium.

    Google Scholar 

  • Baek S H, Sun X X, Lee Y J et al. 2003. Mitigation of harmful algal blooms by sophorolipid. J. Microbiol. Biotech. 13(5): 651–659.

    Google Scholar 

  • Canty M N, Hagger J A, Moore R T B et al. 2007. Sublethal impact of short term exposure to the organophosphate pesticide azamethiphos in the marine mollusc Mytilus edulis. Mar. Pol. Bul., 54: 396–402.

    Article  Google Scholar 

  • Christoffersen K, Hansen B W, Johansson L S et al. 2003. Influence of LAS on marine calanoid copepod population dynamics and potential reproduction. Aquat. Toxicol., 63: 405–416.

    Article  Google Scholar 

  • Glibert P, Pitcher G. 2001. Global ecology and oceanography of harmful algal blooms, GEOHAB Science Plan. SCOR and IOC, Baltimore and Paris. 87 p.

  • Gong L, Li Y, Wang X et al. 2004. The influence of biosurfactant on the growth of Prorocentrum donghaiense. China Environmental Science, 24(6): 692–696. (in Chinese with English abstract)

    Google Scholar 

  • Gong L, Wang X, Li Y et al. 2006. The influence of rhamnolioid on the growth of diatom and its selective algal growth inhibitory action. China Environmental Science, 26(1): 96–100. (in Chinese with English abstract)

    Google Scholar 

  • Guillard R R L, Ryther J H. 1962. Studies of marine planktonic diatoms. Can. J. Microb., 8: 229.

    Article  Google Scholar 

  • Hallegraeff G M. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia., 32: 79–99.

    Google Scholar 

  • Koutsaftis A, Aoyama I. 2007. Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina. Sci. Total Environ., 387: 166–174.

    Article  Google Scholar 

  • Lee Y J, Choi J K, Kim E K. 2008. Field experiments on mitigation of harmful algal blooms using a sophorolipid-Yellow clay mixture and effects on marine plankton. Harmful Algae., 7: 154–162.

    Article  Google Scholar 

  • Liu G X, Xu D H. 2009a. Effects of Calanoid copepod Schmackeria poplesia as a live food on the growth, survival and fatty acid composition of larvae and juveniles of Japanese flounder, Paralichthys olivaceus. J. Ocean Univ. China, 8(4): 359–365. (in Chinese with English abstract)

    Article  Google Scholar 

  • Liu H Y, Zhang W, Xue M et al. 2009b. Acute toxicity study for melamine on Japanese sea bass (Lateolabrax japonicus). Acta Hydrobiologica Sinica, 33(2): 157–163. (in Chinese with English abstract)

    Article  Google Scholar 

  • Mulligan C N. 2005. Environmental applications for biosurfactants. Environ. Pol., 133: 183–198.

    Article  Google Scholar 

  • Mulligan C N, Yong R N, Gibbs B F. 2001a. Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology, 60: 371–380.

    Article  Google Scholar 

  • Mulligan C N, Yong R N, Gibbs B F. 2001b. Heavy metal removal from sediments by biosurfactants. J. Hazardous Materials., 85: 111–125.

    Article  Google Scholar 

  • Petersen K J, Bougrier S, Smaal A C. 2004. Intercalibration of mussel Mytilus edulis clearance rate measurements. Mar. Ecol. Prog. Ser., 267: 187–194.

    Article  Google Scholar 

  • Schippers C, Geßner K, Muller T et al. 2000. Microbial degradation of phenanthrene by addition of a sophorolipid mixture. J. Biotech., 83: 189–198.

    Article  Google Scholar 

  • Smayda T J. 1989. Primary production and the global epidemic of phytoplankton blooms in the sea: a linkage? In: Cosper E M, Bricelj V M, Carpenter E J eds. Novel Phytoplankton Blooms. Springer-Verlag, Berlin. p. 449–483.

    Google Scholar 

  • Smayda T J. 1990. Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Graneli E, Sundstrom B, Elder L, Anderson D M eds. Toxic Marine Phytoplankton. Elsevier, New York. p. 29–40.

    Google Scholar 

  • Sun S, Zhang G T. 2005. Over-summering strategy of Calanus sinicus. IGBP Newsletter., 62: 12–13.

    Google Scholar 

  • Sun X X, Choi J K, Kim E K. 2004a. A preliminary study on the mechanism of harmful algal bloom mitigation by use of sophorolipid treatment. J. Exp. Mar. Biol. Ecol., 304(1): 35–49.

    Article  Google Scholar 

  • Sun X X, Han K N, Choi J K et al. 2004b. Screening of surfactants for harmful algal blooms mitigation. Mar. Pol. Bul., 48(9–10): 937–945.

    Article  Google Scholar 

  • Sun X X, Lee Y J, Choi J K et al. 2004c. Synergistic effect of sophorolipid and loess combination in harmful algal blooms mitigation. Mar. Pol. Bul., 48(9–10): 863–872.

    Article  Google Scholar 

  • Verslycke T, Vangheluwe M, Heijerick D et al. 2003. The toxicity of metal mixtures to the estuarine mysid Neomysis integer (Crustacea: Mysidacea) under changing salinity. Aquat. Toxicol., 64: 307–315.

    Article  Google Scholar 

  • Wang X L, Gong L Y, Liang S K et al. 2005. Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae, 4: 433–443.

    Article  Google Scholar 

  • Yan T, Fu M, Liu H et al. 2003a. The use of bivalve filtration rate in toxicity study on marine pollutants. Marine Sciences, 27(1): 50–53.

    Google Scholar 

  • Yan T, Zhou M J, Tan Z J et al. 2003b. Application of Neomysis awatschensis as a standard marine toxicity test organism in China. J. Environ. Sci., 15(6): 791–795.

    Google Scholar 

  • Zhang L Y, Yan T, Han G et al. 2007. A shipboard study of the effects of HAB species Prorocentrum donghaiense on protozoan communities at three sites in the East China Sea, involving 72 h inoculation experiments to simulate HAB bloom events. Acta Ecologica Sinica, 27(5): 1 926–1 936.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Sun  (孙松).

Additional information

Supported by the National Natural Science Foundation of China (No. 40506026, 40876083, 40631008); the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-Q07-01) and the National Basic Research Priorities Program (No. 2006CB400606)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Kim, E. & Sun, S. Laboratory study on the ecological impact of sophorolipid used for harmful algae elimination. Chin. J. Ocean. Limnol. 28, 1240–1247 (2010). https://doi.org/10.1007/s00343-010-9962-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-010-9962-9

Keyword

Navigation