Adachi M, Sako Y, Ishida Y. 1996. Analysis of Alexandrium (Dinophyceae) species using sequence of the 5.8S ribosomal DNA and internal transcribed spacer regions. J. Phycol., 32: 424–432.
Article
Google Scholar
D’Onofrio G, Marino D, Bianco L et al. 1999. Toward an assessment on the taxonomy of dinoflagellates that produce calcareous cysts (Calciodinelloideae, Dinophyceae): a morphological and molecular approach. J. Phycol., 35: 1 063–1 078.
Google Scholar
Fensome R A, Taylor F J R, Norris G et al. 1993. A Classification of Living and Fossil Dinoflagellates. Micropaleontology Special Publication No. 7, Hanover, Pennsylvania, Sheridan Press. p. 351.
Google Scholar
Gottschling M, Keupp H, Plotner J et al. 2005a. Phylogeny of calcareous dinoflagellates as inferred from ITS and ribosomal sequence data. Mol. Phylogenet Evol., 36: 444–455.
Article
Google Scholar
Gottschling M, Knop R, Plötner J et al. 2005b. A molecular phylogeny of Scrippsiella sensu lato (Calciodinellaceae, Dinophyta) with interpretations on morphology and distribution. Eur. J. Phycol., 40(2): 207–220.
Article
Google Scholar
Guilllard R R L, Ryther J H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Micro., 8: 229–239.
Article
Google Scholar
Ishikawa A, Taniguchi A. 1994. The role of cysts on population dynamics of Scrippsiella spp. (Dinophyceae) in Onagawa Bay, northeast Japan. Mar. Biol., 119: 39–44.
Article
Google Scholar
Ishikawa A, Taniguchi A. 1996. Contribution of benthos cysts to the population dynamics of Scrippsiella spp. (Dinophyceae) in Onagawa Bay, Northeast Japan. Mar. Ecol. Prog. Ser., 140: 169–178.
Article
Google Scholar
Kim E, Wilcox L, Graham L et al. 2004. Genetically distinct populations of the dinoflagellate Peridinium limbatum in neighboring Northern Wisconsin lakes. Microb. Ecol., 48(4): 521–527.
Article
Google Scholar
Lilly E L, Halanych K M, Anderson D M. 2007. Species boundaries and global biogeography of the Alexandrium tamarense complex (Dinophyceae). J. Phycol., 43(6):1 329–1 338.
Article
Google Scholar
Logares R, Rengefors K, Kremp A et al. 2007. Phenotypically different microalgal morphospecies with identical ribosomal DNA: a case of rapid adaptive evolution? Microb. Ecol., 53(4): 549–561.
Article
Google Scholar
John U, Fensome R A, Medlin L K. 2003. The application of a molecular clock based on molecular sequences and the fossil record to explain biogeographic distributions within the Alexandrium tamarense ’species complex’ (Dinophyceae). Mol. Biol. Evol., 220: 1 015–1 027.
Google Scholar
Montresor M, Sgrosso S, Procaccini G et al. 2003. Intraspecifc diversity in Scrippsiella trochoidea (Dinophyceae): evidence for cryptic species. Phycologia
42: 56–70.
Article
Google Scholar
Park J S, Kim H G, Lee S G. 1989. Studies on red tide phenomena in Korean coastal water. In: Okaichi T, Anderson D M, Nemoto T, ed. Red Tides: Biology, Environmental Science and Toxicology. Elsevier, New York. p. 37–40.
Google Scholar
Qi Y Z, Chen J F, Wang Z H et al. 2004. Some observations on harmful algal bloom (HAB) events along the coast of Guangdong, southern China in 1998. Hydrobiologia, 512: 209–214.
Article
Google Scholar
Sako Y, Kimn C H, Ninomiya H et al. 1990. Isozyme and cross analysis of mating populations in the Alexandrium catenella/tamarense species complex. In: Graneli E, Sunderstrom E, Edler L. Toxic Marine Phytoplankton, Elsevier, New York. p. 320–323.
Google Scholar
Scholin C A, Herzog M, Sogin M et al. 1994. Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae) species. II. Sequence analysis of a fragment of the large-subunit ribosomal RNA gene. J. Phycol., 30: 999–1 011.
Article
Google Scholar
Scholin C A, Hallegraeff G M, Anderson D M. 1995. Molecular evolution of the Alexandrium tamarense ’species complex’ (Dinophyceae): Dispersal in the North American and west Pacific regions. Phycologia, 34(6): 472–485.
Google Scholar
Wang S F, Tang D L, He F L et al. 2008. Occurrences of harmful algal blooms (HABs) associated with ocean environments in the South China Sea. Hydrobiologia, 596: 79–93.
Article
Google Scholar
Wang Y, Tang X X. 2008. Interactions between Prorocentrum donghaiense Lu and Scrippsiella trochoidea (Stein) Loeblich III under laboratory culture. Harmful Algae, 7(1): 65–75.
Article
Google Scholar
Wang Z H, Matsuoka K, Qi Y Z et al. 2004a. Dinoflagellate cysts in recent sediments from Chinese coastal waters. Mar. Ecol., 25(4): 289–311.
Article
Google Scholar
Wang Z H, Qi Y Z, Lv S H et al. 2004b. Seasonal distribution of dinoflagellate resting cysts in surface sediments from the Changjiang River estuary. Phycol. Res., 52: 387–395.
Article
Google Scholar
Wang Z H, Matsuoka K, Qi Y Z et al. 2004c. Dinoflagellate cyst records in recent sediments from Daya Bay, South China Sea. Phycol. Res., 52: 396–407.
Article
Google Scholar
Wang Z H, Qi Y Z, Chen J F et al. 2006. Phytoplankton abundance, community structure and nutrients in cultural areas of Daya Bay, South China Sea. J. Mar. Syst., 62: 85–94.
Article
Google Scholar
Wang Z H, Qi Y Z, Yang Y F. 2007. Cyst formation: an important mechanism for the termination of Scrippsiella trochoidea (Dinophyceae) bloom. J. Plankton Res., 29(2): 209–218.
Article
Google Scholar
White T J, Bruns T, Lee S et al. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M A, Gelfand D H, Sninsky J J ed. PCR Protocols: A Guide to Methods and Applications. San Diego, Academic Press. p. 315–322.
Google Scholar
Xu N, Lv S H, Chen J F et al. 2004. The influence of water temperature and salinity on the growth of Scrippsiella trochoidea. Mar. Environ. Sci., 23(3): 36–38. (in Chinese with English abstract)
Google Scholar