Skip to main content
Log in

Diagenetic control of magnetic susceptibility variation in Core MD98-2172 from the Eastern Timor Sea

  • Geology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Detailed mineral magnetic measurements, integrated with grain-size distribution and X-ray diffraction (XRD) analyses, were made on the marine sediments of Core MD98-2172, retrieved from the Eastern Timor Sea. Values of magnetic susceptibility in this core drop sharply down-core from ∼3.85 m deep below sediment/water interface and are very low at ∼5.35 m. However, both XRD and grain-size distribution results show no sudden change in terrigenous input during sedimentation. Mineral magnetic results indicate that the depth of ∼3.85 m may be an oxic/anoxic boundary. Therefore, the sediments below ∼3.85 m have been subjected to intense reductive diagenesis, whereas the sediments above ∼3.85 m are seldom affected. The magnetic properties of the sediments shallower than 3.85 m are dominated by pseudo-single domain (PSD) magnetite, with little down-core variation in its content and grain size. Below ∼3.85 m, the magnetic mineral assemblages that have survived in the sediments may record different stages of the reductive diagenesis: (1) the sediments from the 3.85–5.35 m interval are at the stage of iron oxide reduction; PSD magnetite is the major magnetic contributor, but it becomes less abundant and coarser down-core; (2) the sediments below ∼5.35 m are at the stage of sulphate reduction; ferrimagnetic minerals almost vanish and paramagnetic minerals contribute to down-core susceptibility variations, including pyrite as evidenced by high-temperature magnetic susceptibility measurements. However, the susceptibility variations below ∼5.35 m of Core MD98-2172 show obvious periodicity, despite the intense effect of reductive diagenesis. Furthermore, the down-core susceptibility variations are coincident with fluctuations in the quantity of fine detrital particles (<8 μm), which may come mainly from the advection of the Indonesia Throughflow (ITF) and/or river input from Timor. Therefore, for Core MD98-2172, susceptibility variation below ∼5.35 m, which potentially correspond to fluctuations in the quantity of fine particles, may record the histories of the development of the ITF and precipitation on Timor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berner R A. 1980. Early Diagenesis: A Theoretical Approach. Princeton Univ. Press, Princeton, USA. p. 1–241.

    Google Scholar 

  • Berner R A. 1984. Sedimentary pyrite formation: An update. Geochim. Cosmochim. Acta, 48: 605–615.

    Article  Google Scholar 

  • Biscaye P E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Am. Bull., 76: 803–831.

    Article  Google Scholar 

  • Bloemental J, King J W, Hall F R et al. 1992. Rock magnetism of late Neogene and Pleistocene deep-sea sediments: relationship to sediment source, digenetic processes, and sediment lithology. J. Geophys. Res., 97: 4 361–4 375.

    Google Scholar 

  • Bloemental J, King J W, Hunt A et al. 1993. Origin of the sedimentary magnetic record at Ocean Drilling Program Sites on the Owen Ridge, western Arabian Sea. J. Geophys. Res., 98: 4 199–4 219.

    Google Scholar 

  • Bloemental J, King J W, Tauxe L et al. 1989. Rock magnetic stratigraphy of Leg 108 (eastern tropical Atlantic) Sites 658, 659, 661 and 665. Proc. ODP, Sci. Res., 108: 415–428.

    Google Scholar 

  • Brachfeld S A, Banerjee S K, Guyodo Y et al. 2002. A 13 200 year history of century to millennial-scale paleoenvironmental change magnetically recorded in the Palmer Deep, western Antarctic Peninsula. Earth Planet. Sci. Lett., 194: 311–326.

    Article  Google Scholar 

  • Cağatay M N, Keigwin L D, Okay N et al. 2002. Variability of clay-mineral composition on Carolina Slope (NW Atlantic) during marine isotope stages 1–3 and its paleoceanographic significance. Mar. Geol., 189: 163–174.

    Article  Google Scholar 

  • Canfield D E, Berner E A. 1987. Dissolution and pyritization of magnetite in anoxic marine sediments. Geochim. Cosmochim. Acta, 51: 645–659.

    Article  Google Scholar 

  • Cecil C B, Dulong F T, Harris R A et al. 2003. Observations on Climate and Sediment Discharge in Selected Tropical Rivers, Indonesia. Climate Controls on Stratigraphy. SEPM, Special Publication, 77: 29–50.

    Google Scholar 

  • Chamley H. 1989. Clay Sedimentology. Springer, Berlin, Germany. p. 1–623.

    Google Scholar 

  • Curtis C. 1987. Mineralogical consequences of organic matter degradation in sediments: Inorganicrorganic Diagenesis. In: Leggett J K, Zuffa G G eds. Marine Clastic Sedimentology. Graham and Trotman, London, United Kingdom. p. 108–123.

    Google Scholar 

  • Day R, Fuller M, Schmidt V A. 1977. Hysteresis properties of titanomagnetites: Grain size and composition dependence. Phys. Earth Planet. Inter., 13: 260–267.

    Article  Google Scholar 

  • Dunlop D J. 2002a. Theory and application of the Day Plot (M rs/M s versus H cr/H c) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res., 107, doi:10.1029/2001JB000486.

  • Dunlop D J. 2002b. Theory and application of the Day Plot (M rs/M s versus H cr/H c) 2. Application to data for rocks, sediments, and soils. J. Geophys. Res., 107, doi:10.1029/2001JB000487.

  • Dunlop D J, Özdemir Özden. 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge, United Kingdom. p. 1–573.

    Book  Google Scholar 

  • Earthinfo. 1996. GHCN Global Climate, Boulder, Colorado, Earthinfo, Inc., CD ROM.

    Google Scholar 

  • Edzwald J K, O’Melia C R. 1975. Clay distribution in recent estuaryine sediments. Clays Clay Miner., 23: 39–44.

    Article  Google Scholar 

  • Evans M E, Heller F. 2003. Environmental Magnetism: Principles and Applications of Environmagnetics. Academic Press, Oxford, United Kingdom. p. 1–299.

    Google Scholar 

  • Gingele F X, Deckker P D, Hillenbrand C D. 2001. Clay mineral distribution in surface sediments between Indonesia and NW Australia-source and transport by ocean currents. Mar. Geol., 179: 135–146.

    Article  Google Scholar 

  • Godfrey J S, Golding T J. 1981. The Sverdrup relation in the Indian Ocean, and the effect of Pacific-Indian Ocean throughflow on Indian Ocean circulation and on the East Australian Current. J. Phys. Oceanogr., 11: 771–779.

    Article  Google Scholar 

  • Godfrey J S, Ridgway K R. 1985. The large-scale environment of the poleward-flowing Leeuwin Current, Western Australia: Longshore steric height gradients, wind stresses and geostrophic flow. J. Phys. Oceanogr., 15: 481–495.

    Article  Google Scholar 

  • Gordon A L, Fine R A. 1996. Pathways of water between the Pacific and Indian Oceans in the Indonesian seas. Nature, 379: 146–149.

    Article  Google Scholar 

  • Haack U, Gohn E, Bücker C et al. 1990. Radiogenic heat production measured by laboratory and borehole methods, a comparison. Sci. Drill., 1: 211–216.

    Google Scholar 

  • Hillenbrand C D, Grobe H, Diekmann B et al. 2003. Distribution of clay minerals and proxies for productivity in surface sediments of the Bellingshausen and Amundsen seas (West Antarctica)-Relation to modern environmental conditions. Mar. Geol., 193: 253–271.

    Article  Google Scholar 

  • Hounslow M W, Maher B A. 1999. Source of the climate signal recorded by magnetic susceptibility variations in Indian Ocean sediments. J. Geophys. Res., 104: 5 047–5 061.

    Article  Google Scholar 

  • Huenges E, Bücker C, Lippmann E et al. 1997. Seismic velocity, density, thermal conductivity and heat production of cores from the KTB pilot hole. Geophys. Res. Lett., 24: 345–348.

    Article  Google Scholar 

  • Karlin R, Levi S. 1985. Geochemical and sedimentological control on the magnetic properties of hemipelagic sediments. J. Geophys. Res., 90: 1 0373–1 0392.

    Article  Google Scholar 

  • Keller W D. 1970. Enrironmental aspects of clay minerals. J. Sediment Res. 40: 788.

    Google Scholar 

  • Kuhlemann J, Lange H, Paetsch H. 1993. Implications of a connection between clay mineral variations and coarse grained debris and lithology in the central Norwegian-Greenland Sea. Mar. Geol., 114: 1–11.

    Article  Google Scholar 

  • Lanci L, Kent D V, Miller K G. 2002. Detection of Later Cretaceous and Cenozoic sequence boundaries on the Atlantic coastal plain using core log integration of magnetic susceptibility and natural gamma ray measurements at Ancora, New Jersey. J. Geophys. Res. 107, doi:10.1029/2000JB000026.

    Google Scholar 

  • Li H Y, Zhang S H. 2005. Detection of mineralogical changes in pyrite using measurements of temperature-dependence susceptibilities. Chinese J. Geophys. 48: 1384–1391.

    Google Scholar 

  • Li H Y, Zhang S H, Fang N Q et al. 2006. Magnetic records of Core MD77-181 in the Bay of Bengal and their paleoenvironmental implications, Chinese Sci. Bull., 51: 1 884–1 893.

    Google Scholar 

  • Liu J, Zhu R X, Roberts A P et al. 2004. High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait. J. Geophys. Res., 109, doi:10.1029/2003JB002813.

    Google Scholar 

  • Løvlie R, van Veen P. 1995. Magnetic Susceptibility of a 180 m Sediment Core: Reliability of Incremental Sampling and Evidence for Relationship Between Susceptibility and Gamma Activity. In: Turner P, Turner A eds. Palaeomagnetic Applications in Hydrocarbon Exploration and Production. Geological Society Special Publication. 98:259–266.

  • Maher B A, Thompson R. 1999. Quaternary Climates, Environments and Magnetism. Cambridge University Press, Cambridge, United Kingdom. p. 1–382.

    Book  Google Scholar 

  • Nealson K H. 1983a. Microbial Oxidation and Reduction of Manganese and Iron. In: Westbroek P, de Jong E W eds. Biomineralization and Biological Metal Accumulation. D Reidel, p. 459–479.

  • Nealson K H. 1983b. The Microbial Iron Cycle. In: Krumbein, W E ed. Microbial Geochemistry. Blackwell, London, United Kingdom. p. 159–190.

    Google Scholar 

  • Oldfield F, Robinson S G. 1985. Geomagnetism and Palaeoclimate. In: Tooley M J, Sheil G eds. The climatic scene. George Allen & Unwin, London, United Kingdom.

    Google Scholar 

  • Peters C, Dekkers M J. 2003. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys. Chem. Earth, 28: 659–667.

    Google Scholar 

  • Roberts A P, Stoner J S, Richter C. 1999. Diagenetic enhancement of sapropels from the eastern Mediterranean Sea. Mar. Geol., 153: 103–153.

    Article  Google Scholar 

  • Roberts A P, Weaver R. 2005. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth Planet. Sci. Lett., 231: 263–277.

    Article  Google Scholar 

  • Robinson S G, Maslin M A, McCave I N. 1995. Magnetic-susceptibility variations in upper Pleistocene deep-sea sediments of the NE Atlantic-Implications for ice rafting and paleocirculation at the last glacial maximum. Paleoceanography, 10: 221–250.

    Article  Google Scholar 

  • Robinson S G, Sahota J T S, Oldfield F. 2000. Early diagenesis in North Atlantic abyssal plain sediments characterized by rock-magnetic and geochemical indices. Mar. Geol., 163: 77–107.

    Article  Google Scholar 

  • Rowan C J, Roberts A P, Broadbent T. 2009. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view. Earth Planet. Sci. Lett., 277: 223–235.

    Article  Google Scholar 

  • Sahota J T S, Robinson S G, Oldfield F. 1995. Magnetic measurements used to identify paleoxidation fronts in deep-sea sediments from the Madeira Abyssal Plain. Geophys. Res. Lett., 22: 1 961–1 964.

    Article  Google Scholar 

  • Serra O. 1984. Fundamentals of Well Log Interpretation, Vol. 1, The acquisition of Logging Data. Elsevier, New York, USA.

    Google Scholar 

  • Serra O. 1986. Fundamentals of Well Log Interpretation. Vol. 1, The Interpretation of Logging Data. Elsevier, New York, USA.

    Google Scholar 

  • Sørensen J. 1982. Reduction of ferric iron in anaerobic marine sediment and interaction with reduction of nitrate and sulphate. Appl. Environ. Microbiol., 43: 319–324.

    Google Scholar 

  • Thiry M. 2000. Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth Sci. Rev., 49: 201–221.

    Article  Google Scholar 

  • Thompson R, Oldfield F. 1986. Environmental Magnetism. Allen & Unwin, London, United Kingdom. p. 1–227.

    Google Scholar 

  • Tomczak M, Godfrey J S. 1994. Regional Oceanography: An Introduction. Pergamon Press, Oxford, United Kingdom.

    Google Scholar 

  • van Santvoort P J M, de Lange G J, Langereis C G et al. 1997. Geochemical and paleomagnetic evidence for the occurrence of “missing” sapropels in eastern Mediterranean sediments. Paleoceanography, 12: 773–786.

    Article  Google Scholar 

  • Vigliotti L. 1997. Magnetic properties of light and dark sediment layers from the Japan Sea: diagenetic and paleoclimatic implications. Quat. Sci. Rev., 16: 1 093–1 114.

    Article  Google Scholar 

  • Wahl J S. 1983. Gamma ray logging. Geophysics, 48: 1 536–1 550.

    Article  Google Scholar 

  • Weaver C E. 1989. Clays, Muds, and Shales. Developments in Sedimentology 44. Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  • Wijffels S E, Hautala S, Meyers G et al. 1996. The WOCE Indonesian Throughflow repeat hydrography sections: I10 and IR6. Int. WOCE News Lett., 24: 25–28.

    Google Scholar 

  • Wu H C, Zhang S H, Jiang G Q et al. 2005. Magnetic susceptibility variations of the Edicaran cap carbonates in the Yangtze platform and their implications for paleoclimate. Chin. J Oceanol. Limnol., 23(3): 291–298.

    Article  Google Scholar 

  • Zhang S H, Wang X L, Zhu H. 2000. Magnetic susceptibility variations of the Carbonates controlled by sea-level changes: examples in Devonian to Carboniferous strata in southern Guizhou Province, China. Sci. China, (Ser D), 43(3): 266–276.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihong Zhang  (张世红).

Additional information

Supported by the National Basic Research Program of China (No. 2006CB701400), the National Natural Science Foundation of China (Nos. 40621002, 40974035, 40272074) and Projects of Ministry of Education of China (“111” Project B07011, IRT0546)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Zhang, S., Bai, L. et al. Diagenetic control of magnetic susceptibility variation in Core MD98-2172 from the Eastern Timor Sea. Chin. J. Ocean. Limnol. 28, 1350–1361 (2010). https://doi.org/10.1007/s00343-010-9079-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-010-9079-1

Keyword

Navigation