Chinese Journal of Oceanology and Limnology

, Volume 28, Issue 1, pp 122–130 | Cite as

Anti-proliferative activity of phlorotannin extracts from brown algae Laminaria japonica Aresch

  • Huicheng Yang (杨会成)
  • Mingyong Zeng (曾名湧)Email author
  • Shiyuan Dong (董士远)
  • Zunying Liu (刘尊英)
  • Ruixue Li (李瑞雪)


In this study, we evaluated the anti-proliferative activity of phlorotannins derived from brown algae Laminaria japonica Aresch extracts on the human hepatocellular carcinoma cell (BEL-7402) and on murine leukemic cells (P388) by MTT assay. Cells were incubated with 100 μg/mL of the phlorotannin extract (PE) for 48 h. The inhibitory rate of PE on BEL-7402 and P388 cells was 30.20±1.16% and 43.44±1.86%, respectively, and the half-inhibitory concentration of PE (IC50) on P388 and BEL-7402 cells was 120 μg/mL and >200 μg/mL, respectively. Microscopic observation shows that the morphologic features of tumor cells treated with PE and 5-fluorouracil are markedly different from the normal control group. The inhibitory rate of fraction A2 isolated from PE by sephadex LH-20 for BEL-7402 and P388 cells at the sample concentration of 70.42 μg/mL was 61.96±7.02% and 40.47±8.70%, respectively. The apoptosis peak for fraction A2 was the most profound of all fractions used in the flow cytometry assay. The results indicate that the anti-proliferative of this algal extract is associated with the total phlorotannin content.


Laminaria japonica Aresch phlorotannins anti-proliferative activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bai L. 2008. Isolation of phlorotannins from Laminaria japonica Aresch and their bioactivities of antitumor. Dalian: Dalian University of Technology.Google Scholar
  2. Burritt D J, Larkindale J, Hurd C L. 2002. Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following dessication. Planta, 215: 829–838.CrossRefGoogle Scholar
  3. Carlson D J, Carlson M L. 1984. Reassessment of exudation by fucoid macroalgae. Limnol. Oceanogr., 29: 1 077–1 087.CrossRefGoogle Scholar
  4. Carmichael J, DeGraff W G, Gazdar A F, et al. 1987. Evaluation of a tetrazolium-based semiautomatic colorimetric assay: assessment of chemosensitivity testing. Cancer Res., 47: 936–942.Google Scholar
  5. Cho E J, Rhee S H, Park K Y. 1997. Antimutagenic and cancer cell growth inhibitory effects of seaweeds. J. Food Sci. Nutr., 2: 348–353.Google Scholar
  6. Fan X, Yan X, Fang G, et al. 1999. Antioxidative properties of high molecular weight polyphenols from brown seaweed. Acta Hydrobiologica Sinica, 5: 494–499.Google Scholar
  7. Funahashi H, Imai T, Mase T, et al. 2001. Seaweed revents breast cancer. Jpn. J. Cancer Res., 92: 483–487.Google Scholar
  8. GB8313-87.Tea: Determination of tea polyphenols. China.Google Scholar
  9. Harada H. 1997. Selective cytotoxicity of marine algae extracts of several Human Leukemic Cell Lines. Cytotechnology, 25(1–3): 213–216.CrossRefGoogle Scholar
  10. Higashi-Okai K, Otani S, Okai Y. 1999. Potent suppressive effect of a Japanese edible seaweed, Enteromorpha prolifera (Sujiao-nori) on initiation and promotion phases of chemically induced mouse skin tumorigenesis. Cancer Lett., 140: 21–25.CrossRefGoogle Scholar
  11. Indergaard M, Minsaas J. 1991. Animal and human nutrition. In: Guiry M D, Blunden G. eds. Seaweed Resources in Europe: Uses and Potential. John Wiley & Sons Ltd., Toronto. p. 21–64.Google Scholar
  12. Jennings J S, Steinberg P D. 1994. In situ exudation of phlorotannins by the sublittoral kelp Ecklonia radiata. Marine Biology, 121: 349–354.CrossRefGoogle Scholar
  13. Jiménez-Escrig A, Jiménez-Jiménez I, Pulido R, et al. 2001. Antioxidant activity of fresh and processed edible seaweeds. J. Sci. Food Agri., 81: 530–534.CrossRefGoogle Scholar
  14. Kakinuma M, Park C S, Amano H. 2001. Distribution of free L-cysteine and glutathione in seaweeds. Fisheries Sci., 67: 194–196.CrossRefGoogle Scholar
  15. Lin C. 2005. Study on the physiological activity from two kinds of brown polyphenols. Qingdao: Qingdao University of Chemical Technology.Google Scholar
  16. Lee E J, Sung M K. 2003. Chemoprevention of azoxymethaneinduced rat colon carcinogenesis by seatangle, a fiber-rich seaweed. Plant Foods for Human Nutr. 58: 1–8.CrossRefGoogle Scholar
  17. Morgan K C, Wright J L C, Simpson F J. 1980. Review of chemical constituents of the red alga Palmaria palmata (dulse). Economic Botany, 34: 27–50.Google Scholar
  18. Mossman T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65: 55–63.CrossRefGoogle Scholar
  19. Naasani I, Seimiya H, Tsuruo T. 1998. Telomerase inhibition, telomere shortening, and senescence of cancer cells by tea catechins. Biochem. Biophys. Res. Commun., 249: 391–396.CrossRefGoogle Scholar
  20. Nakamura T, Nagayama K, Uchida K, et al. 1996. Antioxidant activity of phlorotannins isolated from the brown alga. Eisenia bicyclis. Fisheries Sci., 62: 923–926.Google Scholar
  21. Nakayama R, Tamura Y, Kikuzaki H, et al. 1999. Antioxidant effect of the constituents of Susabinori (Porphyra yezoensis). J. Amer. Oil Chem. Soc., 76: 649–653.CrossRefGoogle Scholar
  22. Okai Y, Higashi-Okai K, Nakamura S I, et al. 1994. Suppressive effects of the extracts of Japanese edible seaweeds on mutagen-induced umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002) and tumor promoter-dependent ornithine decarboxylase induction in BALB/c 3T3 fibroblast cells. Cancer Lett., 87: 25–32.CrossRefGoogle Scholar
  23. Okai Y, Higashi-Okai K, Yano Y, et al. 1996. Identification of antimutagenic substances in an extract of edible red alga, Porphyra tenera (Asakusa-nori). Cancer Lett., 100: 235–240.CrossRefGoogle Scholar
  24. Ragan M A, Glombitza K W. 1986. Phlorotannins, brown algal polyphenols. In: Hellebustand J A, Craigie J S. eds. Handbook of Phycological Methods, vol. II. Cambridge University Press, Cambridge. p. 129–241.Google Scholar
  25. Schulz C, Hunter M, Appel H. 1992. Antimicrobial activity of poly-phenols mediates plant-herbivore interactions. In: Hemingway R W, Lakes P E. eds. Plant Polyphenols, p. 621–637.Google Scholar
  26. Steinberg P D. 1985. Feeding preferences of Tegula funebralis and chemical defenses of marine brown algae. Ecol. Monogr., 55: 333–349.CrossRefGoogle Scholar
  27. Steinberg P D. 1989. Biogeographical variation in brown algal polyphenolics and other secondary metabolites: comparison between temperate Australasia and North America. Oecologia, 78: 374–383.CrossRefGoogle Scholar
  28. Steinberg P D. 1992. Geographical variation in the interaction between marine herbivores and brown algal secondary metabolites. In: Paul V J. ed. Ecological Roles of Marine Natural Products. Cornell University Press, New York. p. 51–92.Google Scholar
  29. Teas J, Harbison M L, Gelman R S. 1984. Dietary seaweed (Laminaria) and mammary carcinogenesis in rats Cancer Res., 44: 2 758–2 761.Google Scholar
  30. Tugwell S, Branch G M. 1989. Differential polyphenolic distribution among tissues in the kelps Ecklonia maxima, Laminaria pallida and Macrocystis angustifolia in relation to plant-defense theory. J. Exp. Mar. Biol. Ecol., 129: 219–230.CrossRefGoogle Scholar
  31. Wei Y X, Xu Z H. 2003. Studies on antioxidative activity of high molecular weight polyphenols from two kinds of brown algae. Chinese Traditional and Herbal Drugs, 34: 317–319.Google Scholar
  32. Yamamoto I, Maruyama H. 1985. Effect of dietary seaweed preparations on 1,2-dimethylhydrazine-induced intestinal carcinogenesis in rats. Cancer Lett., 26: 241–251.CrossRefGoogle Scholar
  33. Yamamoto I, Maruyama H, Takahashi M, et al. 1986. The effect of dietary or intraperitoneally injected seaweed preparations on the growth of sarcoma-180 cells subcutaneously implanted into mice. Cancer Lett., 30: 125–131.CrossRefGoogle Scholar
  34. Yamamoto I, Maruyama H, Moriguchi M. 1987. The effect of dietary seaweeds on 7,12-dimethylbenz[a]anthracene-induced mammary tumorigenesis in rats. Cancer Lett., 35: 109–118.CrossRefGoogle Scholar
  35. Yan X, Chuda Y, Suzuki M, et al. 1999. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci. Biotechnol. Biochem., 63: 605–607.CrossRefGoogle Scholar
  36. Yan X, Li X, Zhou C, et al. 1996. Prevention of fish oil rancidity by phlorotannins from Sargassum kjellmanianum. J. Applied Phycol., 8: 201–203.CrossRefGoogle Scholar
  37. Yoshie Y, Wang W, Petillo D, et al. 2000. Distribution of catechins in Japanese seaweeds. Fisheries Sci., 66: 998–1 000.CrossRefGoogle Scholar
  38. Yuan Y V, Carrington M F, Walsh N A. 2005. Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro. Food Chem. Toxicol., 43: 1 073–1 081.Google Scholar
  39. Zhang T. 2004. Study on Extracting and Determination Polyphenols in Red Bean. China Food Additives, 5: 99–100.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Huicheng Yang (杨会成)
    • 1
    • 2
  • Mingyong Zeng (曾名湧)
    • 1
    Email author
  • Shiyuan Dong (董士远)
    • 1
  • Zunying Liu (刘尊英)
    • 1
  • Ruixue Li (李瑞雪)
    • 1
  1. 1.College of Food Science and EngineeringOcean University of ChinaQingdaoChina
  2. 2.Zhejiang Marine Development Research InstituteZhoushanChina

Personalised recommendations