Skip to main content
Log in

Anti-proliferative activity of phlorotannin extracts from brown algae Laminaria japonica Aresch

  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

In this study, we evaluated the anti-proliferative activity of phlorotannins derived from brown algae Laminaria japonica Aresch extracts on the human hepatocellular carcinoma cell (BEL-7402) and on murine leukemic cells (P388) by MTT assay. Cells were incubated with 100 μg/mL of the phlorotannin extract (PE) for 48 h. The inhibitory rate of PE on BEL-7402 and P388 cells was 30.20±1.16% and 43.44±1.86%, respectively, and the half-inhibitory concentration of PE (IC50) on P388 and BEL-7402 cells was 120 μg/mL and >200 μg/mL, respectively. Microscopic observation shows that the morphologic features of tumor cells treated with PE and 5-fluorouracil are markedly different from the normal control group. The inhibitory rate of fraction A2 isolated from PE by sephadex LH-20 for BEL-7402 and P388 cells at the sample concentration of 70.42 μg/mL was 61.96±7.02% and 40.47±8.70%, respectively. The apoptosis peak for fraction A2 was the most profound of all fractions used in the flow cytometry assay. The results indicate that the anti-proliferative of this algal extract is associated with the total phlorotannin content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai L. 2008. Isolation of phlorotannins from Laminaria japonica Aresch and their bioactivities of antitumor. Dalian: Dalian University of Technology.

    Google Scholar 

  • Burritt D J, Larkindale J, Hurd C L. 2002. Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following dessication. Planta, 215: 829–838.

    Article  Google Scholar 

  • Carlson D J, Carlson M L. 1984. Reassessment of exudation by fucoid macroalgae. Limnol. Oceanogr., 29: 1 077–1 087.

    Article  Google Scholar 

  • Carmichael J, DeGraff W G, Gazdar A F, et al. 1987. Evaluation of a tetrazolium-based semiautomatic colorimetric assay: assessment of chemosensitivity testing. Cancer Res., 47: 936–942.

    Google Scholar 

  • Cho E J, Rhee S H, Park K Y. 1997. Antimutagenic and cancer cell growth inhibitory effects of seaweeds. J. Food Sci. Nutr., 2: 348–353.

    Google Scholar 

  • Fan X, Yan X, Fang G, et al. 1999. Antioxidative properties of high molecular weight polyphenols from brown seaweed. Acta Hydrobiologica Sinica, 5: 494–499.

    Google Scholar 

  • Funahashi H, Imai T, Mase T, et al. 2001. Seaweed revents breast cancer. Jpn. J. Cancer Res., 92: 483–487.

    Google Scholar 

  • GB8313-87.Tea: Determination of tea polyphenols. China.

  • Harada H. 1997. Selective cytotoxicity of marine algae extracts of several Human Leukemic Cell Lines. Cytotechnology, 25(1–3): 213–216.

    Article  Google Scholar 

  • Higashi-Okai K, Otani S, Okai Y. 1999. Potent suppressive effect of a Japanese edible seaweed, Enteromorpha prolifera (Sujiao-nori) on initiation and promotion phases of chemically induced mouse skin tumorigenesis. Cancer Lett., 140: 21–25.

    Article  Google Scholar 

  • Indergaard M, Minsaas J. 1991. Animal and human nutrition. In: Guiry M D, Blunden G. eds. Seaweed Resources in Europe: Uses and Potential. John Wiley & Sons Ltd., Toronto. p. 21–64.

    Google Scholar 

  • Jennings J S, Steinberg P D. 1994. In situ exudation of phlorotannins by the sublittoral kelp Ecklonia radiata. Marine Biology, 121: 349–354.

    Article  Google Scholar 

  • Jiménez-Escrig A, Jiménez-Jiménez I, Pulido R, et al. 2001. Antioxidant activity of fresh and processed edible seaweeds. J. Sci. Food Agri., 81: 530–534.

    Article  Google Scholar 

  • Kakinuma M, Park C S, Amano H. 2001. Distribution of free L-cysteine and glutathione in seaweeds. Fisheries Sci., 67: 194–196.

    Article  Google Scholar 

  • Lin C. 2005. Study on the physiological activity from two kinds of brown polyphenols. Qingdao: Qingdao University of Chemical Technology.

    Google Scholar 

  • Lee E J, Sung M K. 2003. Chemoprevention of azoxymethaneinduced rat colon carcinogenesis by seatangle, a fiber-rich seaweed. Plant Foods for Human Nutr. 58: 1–8.

    Article  Google Scholar 

  • Morgan K C, Wright J L C, Simpson F J. 1980. Review of chemical constituents of the red alga Palmaria palmata (dulse). Economic Botany, 34: 27–50.

    Google Scholar 

  • Mossman T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65: 55–63.

    Article  Google Scholar 

  • Naasani I, Seimiya H, Tsuruo T. 1998. Telomerase inhibition, telomere shortening, and senescence of cancer cells by tea catechins. Biochem. Biophys. Res. Commun., 249: 391–396.

    Article  Google Scholar 

  • Nakamura T, Nagayama K, Uchida K, et al. 1996. Antioxidant activity of phlorotannins isolated from the brown alga. Eisenia bicyclis. Fisheries Sci., 62: 923–926.

    Google Scholar 

  • Nakayama R, Tamura Y, Kikuzaki H, et al. 1999. Antioxidant effect of the constituents of Susabinori (Porphyra yezoensis). J. Amer. Oil Chem. Soc., 76: 649–653.

    Article  Google Scholar 

  • Okai Y, Higashi-Okai K, Nakamura S I, et al. 1994. Suppressive effects of the extracts of Japanese edible seaweeds on mutagen-induced umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002) and tumor promoter-dependent ornithine decarboxylase induction in BALB/c 3T3 fibroblast cells. Cancer Lett., 87: 25–32.

    Article  Google Scholar 

  • Okai Y, Higashi-Okai K, Yano Y, et al. 1996. Identification of antimutagenic substances in an extract of edible red alga, Porphyra tenera (Asakusa-nori). Cancer Lett., 100: 235–240.

    Article  Google Scholar 

  • Ragan M A, Glombitza K W. 1986. Phlorotannins, brown algal polyphenols. In: Hellebustand J A, Craigie J S. eds. Handbook of Phycological Methods, vol. II. Cambridge University Press, Cambridge. p. 129–241.

    Google Scholar 

  • Schulz C, Hunter M, Appel H. 1992. Antimicrobial activity of poly-phenols mediates plant-herbivore interactions. In: Hemingway R W, Lakes P E. eds. Plant Polyphenols, p. 621–637.

  • Steinberg P D. 1985. Feeding preferences of Tegula funebralis and chemical defenses of marine brown algae. Ecol. Monogr., 55: 333–349.

    Article  Google Scholar 

  • Steinberg P D. 1989. Biogeographical variation in brown algal polyphenolics and other secondary metabolites: comparison between temperate Australasia and North America. Oecologia, 78: 374–383.

    Article  Google Scholar 

  • Steinberg P D. 1992. Geographical variation in the interaction between marine herbivores and brown algal secondary metabolites. In: Paul V J. ed. Ecological Roles of Marine Natural Products. Cornell University Press, New York. p. 51–92.

    Google Scholar 

  • Teas J, Harbison M L, Gelman R S. 1984. Dietary seaweed (Laminaria) and mammary carcinogenesis in rats Cancer Res., 44: 2 758–2 761.

    Google Scholar 

  • Tugwell S, Branch G M. 1989. Differential polyphenolic distribution among tissues in the kelps Ecklonia maxima, Laminaria pallida and Macrocystis angustifolia in relation to plant-defense theory. J. Exp. Mar. Biol. Ecol., 129: 219–230.

    Article  Google Scholar 

  • Wei Y X, Xu Z H. 2003. Studies on antioxidative activity of high molecular weight polyphenols from two kinds of brown algae. Chinese Traditional and Herbal Drugs, 34: 317–319.

    Google Scholar 

  • Yamamoto I, Maruyama H. 1985. Effect of dietary seaweed preparations on 1,2-dimethylhydrazine-induced intestinal carcinogenesis in rats. Cancer Lett., 26: 241–251.

    Article  Google Scholar 

  • Yamamoto I, Maruyama H, Takahashi M, et al. 1986. The effect of dietary or intraperitoneally injected seaweed preparations on the growth of sarcoma-180 cells subcutaneously implanted into mice. Cancer Lett., 30: 125–131.

    Article  Google Scholar 

  • Yamamoto I, Maruyama H, Moriguchi M. 1987. The effect of dietary seaweeds on 7,12-dimethylbenz[a]anthracene-induced mammary tumorigenesis in rats. Cancer Lett., 35: 109–118.

    Article  Google Scholar 

  • Yan X, Chuda Y, Suzuki M, et al. 1999. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci. Biotechnol. Biochem., 63: 605–607.

    Article  Google Scholar 

  • Yan X, Li X, Zhou C, et al. 1996. Prevention of fish oil rancidity by phlorotannins from Sargassum kjellmanianum. J. Applied Phycol., 8: 201–203.

    Article  Google Scholar 

  • Yoshie Y, Wang W, Petillo D, et al. 2000. Distribution of catechins in Japanese seaweeds. Fisheries Sci., 66: 998–1 000.

    Article  Google Scholar 

  • Yuan Y V, Carrington M F, Walsh N A. 2005. Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro. Food Chem. Toxicol., 43: 1 073–1 081.

    Google Scholar 

  • Zhang T. 2004. Study on Extracting and Determination Polyphenols in Red Bean. China Food Additives, 5: 99–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyong Zeng  (曾名湧).

Additional information

Supported by the National Key Technology Research & Development Program of the 11th Five Year Plan of China (No. 2006BAD30B01) and the National Natural Science Foundation of China (No. 30871945)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Zeng, M., Dong, S. et al. Anti-proliferative activity of phlorotannin extracts from brown algae Laminaria japonica Aresch. Chin. J. Ocean. Limnol. 28, 122–130 (2010). https://doi.org/10.1007/s00343-010-9054-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-010-9054-x

Keyword

Navigation