Skip to main content

Advertisement

Log in

Accumulation of petroleum hydrocarbons and heavy metals in clams (Ruditapes philippinarum) in Jiaozhou Bay, China

  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Accumulation and distributions of aliphatic and polyaromatic hydrocarbons (PAHs) and heavy metals were measured in tissues of the clam Ruditapes philippinarum collected from 5 sites in Jiaozhou Bay, Qingdao, China. The concentrations of total aliphatic hydrocarbon and PAHs ranged from 570 to 2 574 ng/gdw (gram dry weight) and from 276 to 939 ng/gdw, in the most and least polluted sites, respectively. The bio-accumulation of hydrocarbons and PAHs in the clams appeared to be selective. Aliphatic hydrocarbons were predominantly represented by short chain (<nC23) n-alkanes, suggesting that petroleum hydrocarbons were likely the major contamination source. The selective uptake of 3 and 4 ring PAHs, such as naphthalene, fluorene, phenanthrene, fluoranthene and pyrene, by the clams was probably related to the physiological and bio-kinetic processes that were energetically favorable for uptake of compounds with fewer rings. Accumulation of the metals Cd, Cu, Zn, Pb, Cr, Hg, and As in the clam tissues also showed high variability, ranging from 0.043 to 87 µg/gdw. Among the 7 detected metals, Zn, Cd, Cu, and As had a particularly high potential of accumulation in R. philippinarum. In general, a positive correlation was found between the tissue concentrations and sediment concentrations of hydrocarbons and of some metals. Our study suggests that moderate contamination with polyaromatic hydrocarbons, and low to moderate contamination with metals, currently exists for clam R. philippinarum in Jiaozhou Bay, in comparison with other regional studies. A long-term monitoring program is certainly needed for assessment of the potential ecological influence and toxicity of these contaminants of R. philippinarum in Jiaozhou Bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn I Y, Ji J, Choi H J, Pyo S H, Park H, Choi J W. 2006. Spatial variations of heavy metal accumulation in manila clam Ruditapes philippinarum from some selected intertidal flats of Korea. Ocean and Polar Research, 28(3): 215–224.

    Google Scholar 

  • Azevedo L A, De Andrade Bruning M R, Moreira I. 2004. Hydrocarbon contamination in mussels from Guanabara Bay. Mar. Pollut. Bull., 49(11–12): 1109–1126.

    Google Scholar 

  • Baumard P, Budzinski H, Garrigues P. 1998. Polycyclic aromatic hydrocarbons in sediments and mussels of the Western Mediterranean Sea. Environ. Toxicol. Chem., 17(5): 765–776.

    Article  Google Scholar 

  • Bi H S, Sun S, Sun D Y. 2001. Changes of macrobenthic communities in Jiaozhou Bay. Oceanologia et Limnologia Sinica, 32(2): 132–138. (in Chinese)

    Google Scholar 

  • Boehm P D, Quinn J G. 1977. The persistence of chronically accumulated hydrocarbons in the hard shell clam mercenaria. Mar. Biol., 44: 227–233.

    Article  Google Scholar 

  • Cai L Z, Ma L, Yuan D X, Zhang J, Zhang W J, Gao Y, Lu Z Q. 2005. Polycyclic aromatic hydrocarbons in the Jiulong in zoobenthos in mangrove swamp river estuary. Acta Oceanologica Sinica, 27(5): 112–118. (in Chinese)

    Google Scholar 

  • Chen Z, Kostaschuk R, Yang M. 2001. Heavy metals on tidal flats in the Yangtze estuary, China. Environ. Geol., 40: 742–749.

    Article  Google Scholar 

  • Colombo J C, Pelletier E, Brochu C, Khalil M, Catoggio J A. 1989. Determination of hydrocarbon sources using n-alkane and polyaromatic hydrocarbon distribution indexes. Case study: Rio de La Plata estuary, Argentina. Environ. Sci. Technol., 23: 888–894.

    Article  Google Scholar 

  • Colombo J C, Cappelletti N, Migoya M C, Speranza E. 2007. Bioaccumulation of anthropogenic contaminants by detritivorous fish in the Riode la Plata estuary: 1-aliphatic hydrocarbons. Chemosphere, 68: 2 128–2 135.

    Article  Google Scholar 

  • Commendatore M G, Esteves J I, Colombos J C. 2000. Hydrocarbons in coastal sediments of Patagonia, Argentina: levels and probable sources. Mar. Pollut. Bull., 40: 989–998.

    Article  Google Scholar 

  • Cripps G C. 1989. Problems in the identification of anthropogenic hydrocarbons against natural background levels in the Antarctic. Antarctic Science, 1(4): 307–312.

    Article  Google Scholar 

  • EC1881-2006, 2006. COMMISSION REGULATION (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants on foodstuffs (Text with EEA relevance). Official Journal of the European Union. From http://www.foodmate.net.

  • Fang Z Q, Cheung Y H, Wong M H. 2003. Heavy metals in oysters, mussels and clams collected from coastal sites along the Pearl River Delta, South China. Journal of Environmental Sciences, 15(1): 9–24.

    Google Scholar 

  • Feng H, Han X F, Zhang W G, Yu L Z. 2004. A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Mar. Pollut. Bull., 49: 910–915.

    Article  Google Scholar 

  • GB18406.4-2001, 2001. Safety qualification for agricultural product-safety requirements for non-environmental pollution aquatic product. From http://www.foodmate.net.

  • Gearing P, Gearing J, Lytle T F, Lytle J. 1976. Hydrocarbons in 60 northeast gulf of Mexico shelf sediments: a preliminary survey. Geochim. Cosmochim. Acta, 40: 1005–1017.

    Article  Google Scholar 

  • Giusti L, Williamson A C, Mistry A. 1999. Biologically available trace metals in Mytilus edulis from the coast of Northern England. Environment International, 25: 969–981.

    Article  Google Scholar 

  • Goldberg E D, Bowen V T, Farrington J W, Harvey D, Martin J H, Parker P L, Risebrough R W, Robertson W, Scheiner E, Gamble E. 1978. The Mussel Watch. Environmental Conservation, 5: 101–125.

    Article  Google Scholar 

  • Guo Y L, Ren Y P, Yang H B. 2005. A study on the growth characteristics of the clam Ruditapes philippinarum in Jiaozhou bay. Periodical of Ocean University of China, 35(5): 779–784. (in Chinese)

    Google Scholar 

  • Haderlie E C, Abbott D P. 1980. Bivalvia: The Clam and Allies. In: Morris R H, Abbott D P, Haderlie E C. eds. Intertidal Invertebrates of California. Stanford University Press, Stanford, California. p. 355–411.

    Google Scholar 

  • Han Q X, Gao W F, Li B Q, Li X Z. 2004. Evaluation on the biomass and resource of Ruditapes philippinarum from Jiaozhou Bay. Chinese Journal of Zoology, 39: 60–62. (in Chinese)

    Google Scholar 

  • Hong H, Xu L, Zhang L, Chen J C, Wong Y S, Wan T S. 1995. Environmental fate and chemistry of organic pollutants in the sediment of Xiamen Harbor and Victoria Harbor. Mar. Pollut. Bull., 31: 229–236.

    Article  Google Scholar 

  • James M O. 1989. Biotransformation and disposition of PAH in aquatic invertebrates. In: Varanasi, U. Ed. Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press, Inc., Boca Raton Florida. p. 69–91.

    Google Scholar 

  • Kasai A, Horie H, Sakamoto W. 2004. Selection of food sources by Ruditapes philippinarum and Mactra veneriformis (bivalva: mollusca) determined from stable isotope analysis. Fisheries Science, 70: 11–20.

    Article  Google Scholar 

  • Landrum P F, Robbin J A. 1990. Bioavailability of sediment-associated contaminants to benthic invertebrates. In: Baudo R, Giesy J P, Muntau H, eds. Sediments: Chemistry and Toxicity of in-Place Pollutants. CRC Press, Inc., Boca Raton, Florida. p. 237–263.

    Google Scholar 

  • Landrum P F, Lotufo G R, Gossiaux D C, Gedeon M L, Lee J H. 2003. Bioaccumulation and critical body residue of PAHs in the amphipod, Diporeia spp.: additional evidence to support toxicity additivity for PAH mixtures. Chemosphere, 51: 481–489.

    Article  Google Scholar 

  • Li M S, Lee S Y. 1998. Carbon dynamics of deep bay, eastern Pearl River estuary, China: I. A mass balance budget and implications for shorebird conservation. Marine Ecology. Progress Series, 172: 73–87.

    Article  Google Scholar 

  • Li M Y, Xue X L, Feng J, Yu F. 1989. The population dynamics of clam (Ruditapes philippinarum) and the measures for its propagation protection. Acta Ecologica Sinica, 9(4): 297–303. (in Chinese)

    Google Scholar 

  • Li Y, Yu Z M, Song X X, Mu Q L. 2006. Trace metal concentrations in suspended particles, sediments and clams (Ruditapes philippinarum) from Jiaozhou Bay of China. Environ. Monit. Assess., 121: 491–501.

    Article  Google Scholar 

  • Liang L N, He B, Jiang G B, Chen D Y, Yao Z W. 2004. Evaluation of mollusks as biomonitors to investigate heavy metal contaminations along the Chinese Bohai Sea. Sci. Total Environ., 324: 105–113.

    Article  Google Scholar 

  • Liu M X, Bao W Y, Zhang S L. 1983. The seasonal variation of some trace metals in the Ruditapes philippinarum in Jiaozhou Bay. Oceanologia et Limnologia Sinica, 14: 22–29. (in Chinese)

    Google Scholar 

  • Liu W X, Li X D, Shen Z G, Wang D C, Wai W H, Li Y S. 2003. Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River estuary. Environ. Pollut., 121(3): 377–388.

    Article  Google Scholar 

  • Long E R, Macdonald D D, Smith S L, Calder F D. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Journal of Environmental Management, 19: 81–97.

    Article  Google Scholar 

  • Luisa A B, Stephen M M, Maria J B. 2007. Polycyclic aromatic hydrocarbons in clams Ruditapes decussates (Linnaeus, 1758). J. Environ. Monit., 9: 187–198

    Article  Google Scholar 

  • Maanan M. 2008. Heavy metal concentrations in marine molluscs from the Moroccan coastal region. Environ. Pollut., 153: 176–183.

    Article  Google Scholar 

  • Mai B, Fu J, Zhang G, Zheng L, Min Y, Sheng G, Wang X. 2001. Polycyclic aromatic hydrocarbons in sediments from the Pearl River and estuary, China: spatial and temporal distribution and sources. Appl. Geochem., 16: 1429–1445.

    Article  Google Scholar 

  • Nasci C, DaRos L, Nesto N, Sperni L, Passarini F, Pavoni B. 2000. Biochemical and histochemical responses to environmental contaminants in clam, Tapes philippinarum, transplanted to different polluted areas of Venice Lagoon, Italy. Mar. Environ. Res., 50: 425–430.

    Article  Google Scholar 

  • O’Connor T P. 2002. National distribution of chemical concentrations in mussels and oysters in the USA. Mar. Environ. Res., 53: 117–143.

    Article  Google Scholar 

  • Oros D R, Ross J R M. 2005. Polycyclic aromatic hydrocarbons in bivalves from the San Francisco estuary: spatial distributions, temporal trends, and sources. Mar. Environ. Res., 60: 466–488.

    Article  Google Scholar 

  • Pearson A, Eglinton T I. 2000. The origin of n-alkanes in Santa Monica Basin surface sediment: a model based on compound specific Δ14c and δ13c data. Org. Geochem., 31: 1103–1116.

    Article  Google Scholar 

  • Phillips D J H. 1988. Monitoring of toxic contaminants in the San Francisco Bay-delta: A critical review, emphasizing spatial and temporal trend monitoring. San Francisco estuary Institute, Oakland, CA. AHI reports.

    Google Scholar 

  • Roesijadi G, Woodruff D L, Anderson J W. 1978. Bioavailability of naphthalenes from marine sediments artificially contaminated with Prudhoe Bay crude oil. Environ. Pollut., 15(3): 223–229.

    Article  Google Scholar 

  • Scanes P. 1996. Oyster watch: monitoring trace metal and organochlorine concentrations in Sydney’s coastal waters. Mar. Pollut. Bull., 33: 226–238.

    Article  Google Scholar 

  • Shchekaturina T L, Khesina A L, Mironov O G, Krivosheeva L G. 1995. Carcinogenic polycyclic aromatic hydrocarbons in mussels from the Black Sea. Mar. Pollut. Bull., 30: 38–40.

    Article  Google Scholar 

  • Thompson R E, Voit E O, Scott G I. 2000. A probabilistic model for predicting distributions of PAH ratios between oysters and marine sediments. Ecological Modelling, 135: 231–242.

    Article  Google Scholar 

  • Torsen W A, Cope W G, Shea D. 2004. Bioavailability of PAHs: effects of soot carbon and PAH source. Environ. Sci. Technol., 38: 2029–2037.

    Article  Google Scholar 

  • Trocine R P, Trefry J H. 1996. Metal concentrations in sediment, water and clams from the India River Lagoon, Florida. Mar. Pollut. Bull., 32: 754–759.

    Article  Google Scholar 

  • United States Environmental Protection Agency (USEPA), 1999. SW-846 Reference Methodology: Method 3050b. Standard Operating Procedure for the digestion of soil/sediment samples using a hotplate/beaker digestion technique.

  • Varanasi U, Reichert W L, Stein J E, Brown D W, Sanborn H R. 1985. Bioavailability and biotransformation of aromatic hydrocarbons in benthic organisms exposed to sediment from an urban estuary. Environ. Sci. Technol., 19: 836–841.

    Article  Google Scholar 

  • Wang X C, Sun S, Ma H Q, Liu Y. 2006. Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Jiaozhou Bay, Qingdao China. Mar. Pollut. Bull. 52: 129–138.

    Article  Google Scholar 

  • Wang X C, Feng H, Ma H Q. 2007. An assessment of metal contamination in surface sediments of Jiaozhou Bay, Qingdao, China. Clean Soil Air Water, 35(1): 62–70.

    Article  Google Scholar 

  • Weston D P, Penry D L, Gulmann N K. 2000. The role of ingestion as a route of contaminant bioaccumulation in a deposit-feeding polychaete. Arch. Environ. Contam. Toxicol., 38: 446–54.

    Article  Google Scholar 

  • Wu Y, Zhang J, Mi T Z, Li B. 2001. Occurrence of n-alkanes and polycyclic aromatic hydrocarbons in the core sediments of the Yellow Sea. Mar. Chem., 76: 1–15.

    Article  Google Scholar 

  • Wetzel D L, van Vleet E S. 2004. Accumulation and distribution of petroleum hydrocarbons found in mussels (Mytilus galloprovincialis) in the canals of Venice, Italy. Mar. Pollut. Bull., 48: 927–936

    Article  Google Scholar 

  • Zhang J, Cai L Z, Yuan D X, Chen M. 2004. Distribution and sources of polynuclear aromatic hydrocarbons in mangrove surficial sediments of deep bay, China. Mar. Pollut. Bull., 49: 479–486.

    Article  Google Scholar 

  • Zhang X Q, Sun Y L. 2007. Study on the environmental capacity in Jiaozhou Bay. Mar. Environ. Sci., 26(4): 347–359. (in Chinese)

    Google Scholar 

  • Zhang Z, Dai M, Hong H, Zhou J L, Yu G. 2002. Dissolved insecticides and polychlorinated biphenyls in the Pearl estuary and South China Sea. J. Environ. Monit., 4: 922–928.

    Article  Google Scholar 

  • Zhu X B, Xu W H, Wang X T, Huang X P, Deng L P, Kang X L, Jiang Z G, Ma X L. 2005. Research on heavy metals in Ruditapes philippinarum and soda industry wastes. Chinese Journal of Oceanology and Limnology, 23(1): 39–42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuchen Wang  (王旭晨).

Additional information

Supported by the research grant from Chinese Academy of Sciences (No. L70032316) and the National Natural Science Foundation of China (Nos. 40476038 and 40576039)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, H., Song, Q. & Wang, X. Accumulation of petroleum hydrocarbons and heavy metals in clams (Ruditapes philippinarum) in Jiaozhou Bay, China. Chin. J. Ocean. Limnol. 27, 887–897 (2009). https://doi.org/10.1007/s00343-009-9223-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-009-9223-y

Keyword

Navigation