Skip to main content
Log in

Ingestion of Brachionus plicatilis under different microalgae conditions

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The effects of four microalgae, Chlorella vulgaris, Platymonas helgolandicavar, Isochrysis galbana, and Nitzschia closterium on the grazing and filtering rates of the marine rotifer, Brachionus plicatilis, were evaluated under laboratory conditions. The grazing rates in separate cultures of the four microalga were as follows: C. vulgaris > P. helgolandicavar > I. galbana > N. closterium. However, the filtering rates occurred in the following order: P. helgolandicavar > N. closterium > C. vulgaris > I. galbana. A mixed diets experiment revealed that P. helgolandicavar was the preferred diet of B. plicatilis. In addition, the grazing rate of B. plicatilis increased gradually as the density of the microalgae increased, until concentrations of 2.5×106 cells mL−1 for C. vulgaris and 1.5×106 cells mL−1 for I. galbana were obtained. Furthermore, the filtering rate increased slightly when the density of the microalgae was low, after which it declined as the microalgal density increased. The grazing rates of B. plicatilis were as follows during the different growth phases: stationary phase > exponential phase > lag phase > decline phase. Additionally, the filtering rates during the growth phases were: exponential phase > lag phase > stationary phase > decline phase. The results of this study provide foundational information that can be used to explore the optimal culture conditions for rotifers and to promote the development of aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alva-Martínez A, Sarma S, Nandini S. 2007. Effect of mixed diets (cyanobacteria and green algae) on the population growth of the cladocerans Ceriodaphnia dubia and Moina macrocopa. Aquatic Ecology, 41(4): 579–585.

    Article  Google Scholar 

  • Awaiss A, Kestemont P, Micha J. 1992. An investigation into the mass production of the freshwater rotifer Brachionus calyciflorus Pallas. 1. An eco-physiological approach to nutrition. Aquaculture, 105(3): 325–336.

    Article  Google Scholar 

  • Bevington J, White C, Wallace R. 1995. Predatory behavior of Cupelopagis vorax (Rotifera; Collothecacea; Atrochidae) on protozoan prey. Hydrobiologia, 313(1): 213–217.

    Article  Google Scholar 

  • Bransden M, Cobcroft J, Battaglene S. 2005. Dietary 22: 6(n-3) alters gut and liver structure and behaviour in larval striped trumpeter (Latris lineata). Aquaculture, 248(4): 275–285.

    Article  Google Scholar 

  • Dhert P, Rombaut G, Suantika G. 2001. Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture, 200(2): 129–146.

    Article  Google Scholar 

  • Fernández-Araiza M, Sarma S, Nandini S. 2005. Combined effects of food concentration and temperature on competition among four species of Brachionus (Rotifera). Hydrobiologia, 546(1): 519–534.

    Article  Google Scholar 

  • Ferrao-Filho A, Kozlowsky-Suzuki B, Azevedo S. 2002. Accumulation of microcystins by a tropical zooplankton community. Aquatic Toxicology, 59(3): 201–208.

    Article  Google Scholar 

  • Frost B W. 1972. Effects of size and concentration of food partides on the feeding behavior of the marine planktonic copepod Calanus pacific. Limnology and Oceanography, 805-815.

  • Gobler C, Davis T, Coyne K. 2007. Interactive influences of nutrient loading, zooplankton grazing, and microcystin synthetase gene expression on cyanobacterial bloom dynamics in a eutrophic New York lake. Harmful Algae, 6(1): 119–133.

    Article  Google Scholar 

  • Hagiwara A, Balompapueng M, Munuswamy N. 1997. Mass production and preservation of the resting eggs of the euryhaline rotifer Brachionus plicatilis and B. rotundiformis. Aquaculture, 155(1): 223–230.

    Article  Google Scholar 

  • Hansen B, Wernberg-Moller T, Wittrup L. 1997. Particle grazing efficiency and specific growth efficiency of the rotifer Brachionus plicatilis (Muller). Journal of Experimental Marine Biology and Ecology, 215(2): 217–233.

    Article  Google Scholar 

  • Hotos G. 2002. Selectivity of the rotifer Brachionus plicatilis fed mixtures of algal species with various cell volumes and cell densities. Aquaculture Research, 33(12): 949–957.

    Article  Google Scholar 

  • James C, Abu-Rezeq T. 1988. Effect of different cell densities of Chlorella capsulata and a marine Chlorella sp. for feeding the rotifer Brachionus plicatilis, Aquaculture, 69(1): 43–56.

    Article  Google Scholar 

  • Kostopoulou V, Vadstein O. 2007. Growth performance of the rotifers Brachionus plicatilis, B. Nevada and B. Cayman’ under different food concentrations. Aquaculture, 273(4): 449–458.

    Article  Google Scholar 

  • Mayeli S, Nandini S, Sarma S. 2005. The efficacy of Scenedesmus morphology as a defense mechanism against grazing by selected species of rotifers and cladocerans. Aquatic Ecology, 38(4): 515–524.

    Article  Google Scholar 

  • Navarro N. 1999. Feeding behaviour of the rotifers Brachionus plicatilis and Brachionus rotundiformis with two types of food: live and freeze-dried microalgae. Journal of Experimental Marine Biology and Ecology, 237(1): 75–87.

    Article  Google Scholar 

  • Olsen Y, Evjemo J, A. Olsen. 1999. Status of the cultivation technology for production of Atlantic halibut (Hippoglossus) juveniles in Norway/Europe. Aquaculture, 176(1): 3–13.

    Article  Google Scholar 

  • Oltra R, Bosque T. 2000. Life history and fatty acid composition of the marine rotifer Synchaeta cecilia valentina fed different algae. Marine Ecology Progress Series, 193: 125–133.

    Article  Google Scholar 

  • Pavón-Meza E, Sarma S, Nandini S. 2007. Combined effects of temperature, food (Chlorella vulgaris) concentration and predation (Asplanchna girodi) on the morphology of Brachionus havanaensis (Rotifera). Hydrobiologia, 593(1): 95–101.

    Article  Google Scholar 

  • Pavón-Meza E, Sarma S, Nandini S. 2005. Combined effects of algal (Chlorella vulgaris) food level and temperature on the demography of Brachionus havanaensis (Rotifera): a life table study. Hydrobiologia, 546(1): 353–360.

    Article  Google Scholar 

  • Pena-Aguado F, Nandini S, Sarma S. 2005. Differences in population growth of rotifers and cladocerans raised on algal diets supplemented with yeast. Limnologica-Ecology and Management of Inland Waters, 35(4): 298–303.

    Article  Google Scholar 

  • Polo A, Yufera M, Pascual E. 1992. Feeding and growth of gilthead seabream (Sparus aurata L.) larvae in relation to the size of the rotifer strain used as food. Aquaculture, 103(1): 45–54.

    Article  Google Scholar 

  • Rajkumar M, Kumaraguru V K. 2006. Suitability of the copepod, Acartia clausi as a live feed for Seabass larvae (Lates calcarifer Bloch): Compared with traditional live-food organisms with special emphasis on the nutritional value. Aquaculture, 261(2): 649–658.

    Article  Google Scholar 

  • Rioboo C, Prado R, Herrero C. 2007. Population growth study of the rotifer Brachionus sp. fed with triazine-exposed microalgae. Aquatic Toxicology, 83(4): 247–253.

    Article  Google Scholar 

  • Suantika G, Dhert P, Nurhudah M. 2000. High-density production of the rotifer Brachionus plicatilis in a recirculation system: consideration of water quality, zoo technical and nutritional aspects. Aquacultural Engineering, 21(3): 201–213.

    Article  Google Scholar 

  • Suchar V, Chigbu P. 2006. The effects of algae species and densities on the population growth of the marine rotifer, Colurella dicentra. Journal of Experimental Marine Biology and Ecology, 337(1): 96–102.

    Article  Google Scholar 

  • Turner J, Borkman D. 2005. Impact of zooplankton grazing on Alexandrium blooms in the offshore Gulf of Maine. Deep Sea Research Part II: Topical Studies in Oceanography, 52(19): 2 801–2 816.

    Google Scholar 

  • Van der Stap I, Vos M, Mooij W M. 2007. Inducible defenses and rotifer food chain dynamics. Hydrobiologia, 593(1): 103–110.

    Article  Google Scholar 

  • Wang X L, Ma S, Dong S L. 2006. Effects of water temperature and dietary carbohydrate levels on growth and energy budget of juvenile Litopenaeus vannamei. Chinese Journal of Oceanology and Limnology, 24(3): 318–324.

    Article  Google Scholar 

  • Yúfera M, Pascual E, Olivares J. 2005. Factors affecting swimming speed in the rotifer Brachionus plicatilis. Hydrobiologia, 546(1): 375–380.

    Article  Google Scholar 

  • Yan T, Zhou M J, Qian P Y. 2003. Competition among Dinoflagellate Alexandrium Tamarense, Raphidophyte Heterosigma Carterae and Diatom Skeletonema Costatum under combinations of two temperatures and five salinities. Chinese Journal of Oceanology and Limnology, 21(3): 245–250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuexi Tang  (唐学玺).

Additional information

Supported by Natural Science Foundation of China (No. 30270258) and Program for New Century Excellent Talents in University (NCET-05-0597)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W., Tang, X., Qiao, X. et al. Ingestion of Brachionus plicatilis under different microalgae conditions. Chin. J. Ocean. Limnol. 27, 473–479 (2009). https://doi.org/10.1007/s00343-009-9208-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-009-9208-x

Keyword

Navigation