Skip to main content
Log in

Characterization of a new lectin involved in the protoplast regeneration of Bryopsis hypnoides

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

A group of coenocytic marine algae differs from higher plants, whose totipotency depends on an intact cell (or protoplast). Instead, this alga is able to aggregate its extruded protoplasm in sea water and generate new mature individuals. It is thought that lectins play a key role in the aggregation process. We purified a lectin associated with the aggregation of cell organelles in Bryopsis hypnoides. The lectin was ca. 27 kDa with a pI between pH 5 and pH 6. The absence of carbohydrate suggested that the lectin was not a glycoprotein. The hemagglutinating activity (HA) of the lectin was not dependent on the presence of divalent cations and was inhibited by N-Acetylgalactosamine, N-Acetylglucosamine, and the glycoprotein bovine submaxillary mucin. The lectin preferentially agglutinated Gram-negative bacterium. The HA of this lectin was stable between pH 4 to pH 10. Cell organelles outside the cytoplasm were agglutinated by the addition of lectin solution (0.5 mg ml−1). Our results suggest that the regeneration of B. hypnoides is mediated by this lectin. We also demonstrated that the formation of cell organelle aggregates was inhibited by nigericin in natural seawater (pH 8.0). Given that nigericin dissipates proton gradients across the membrane, we hypothesize that the aggregation of cell organelles was proton-gradient dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belogortseva N I, Molchanova V I, Kurika A V, Skobun A S, Glazkova V E. 1998. Isolation and characterization of new GalNAc/Gal specific lectin from the sea mussel Crenomytilus grayanus. Comp. Biochem. Physiol., 119: 45–50.

    Google Scholar 

  • Benevides N M B, Holanda M L, Melo F R, Freitas A L P, Sampaio A H. 1998. Purification and partial characterisation of the lectin from the marine red alga Enantiocladia duperreyi (C. agardh) Falkenberg. Botanica Marina., 41: 521–525.

    Article  Google Scholar 

  • Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.

    Article  Google Scholar 

  • Cominetti M R, Marques M R F, Lorenzini D M, Löfgren S E, Daffre S, Barracco M A. 2002. Characterization and partial purification of a lectin from the hemolymph of the white shrimp Litopenaeus schmitti. Dev. Comp. Immunol., 26: 715–721.

    Article  Google Scholar 

  • Dai C J, Wang G Z, He J F, Li S J, Huang H Y. 2006. Purification and characterization of lectin from humoral fluids of Charybdis feriatus. Chinese Journal of Oceanology and Limnology, 24: 390–394.

    Article  Google Scholar 

  • Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Biochem., 28: 350–356.

    Google Scholar 

  • Halbig D, Hou B, Freudl R, Sprenger G A, Klõsgen R B. 1999. Bacterial protein carrying twin-R signal peptides are specifically targeted by the ΔpH-dependent transport machinery of the thylakoid membrane system. FEBS Lett., 447: 95–98.

    Article  Google Scholar 

  • Herrler G, Reuter G, Rott R, Klenk H D, Schauer R. 1987. N-acetyl-9-O-acetylneuraminic acid, the receptor determinant for influenza C virus, is a differentiation marker on chicken erythrocytes. Biol. Chem. Hoppe. Seyler., 368: 451–454.

    Google Scholar 

  • Hori K, Miyazawa K, Ito K. 1987. A mitogenic agglutinin from the red alga Carpopeltis flabelata. Phytochemistry, 26: 1 335–1 338.

    Article  Google Scholar 

  • Hori K, Miyazawa K, Ito K. 1990. Some common properties of lectins from marine algae. Hydrobiologia, 204/205: 561–566.

    Article  Google Scholar 

  • Joshi J P. 1987. Putative polyadenylation signals in nuclear genes of higher plants: a comparison and analysis. Nucleic Acids Res., 15: 9 627–9 640.

    Google Scholar 

  • Kim G H, Klotchkova T A, Kang Y M. 2001. Life without a cell membrane: regeneration of protoplasts from disintegrated cells of the marine green alga Bryopsis plumose. J. Cell Sci., 114: 2 009–2 014.

    Google Scholar 

  • Kim G H, Klotchkova T A, West J A. 2002. From protoplasm to swarmer: regeneration of protoplasts from disintegrated cells of the multicellular marine green alga Microdictyon umbilicatum (Chlorophyta). J. Phycol., 38: 174–178.

    Article  Google Scholar 

  • Klotchkova T A, Kim G H. 2006. Purification and characterization of a lectin, Bryohealin, involved in the protoplast formation of a marine green alga Bryopsis plumose. J. Phycol., 42: 86–95.

    Article  Google Scholar 

  • Klotchkova T A, Chah O K, West J A, Kim G H. 2003. Cytochemical and ultrastructural studies on protoplast formation from disintegrated cells of a marine green alga Chaetomorpha aerea (Chlorophyta). Eur. J. Phycol., 38: 205–216.

    Article  Google Scholar 

  • Kobayashi K, Kanaizuka Y. 1985. Reunification of sub-cellular fractions of Bryopsis into viable cells. Plant Sci., 40: 129–135.

    Article  Google Scholar 

  • Laemmli U K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680–685.

    Article  Google Scholar 

  • Mariani-Colombo P, Vannini G L, Mares D. 1980. A cytochemical approach to the wound repair mechanism in Udotea petiolata (Siphonales). Protoplasma, 104: 105–117.

    Article  Google Scholar 

  • O’Neil R M, La Claine J W. 1984. Mechanical wounding induces the formation of extensive coated membranes in giant cell. Science, 255: 331–333.

    Article  Google Scholar 

  • Pak J Y, Solorzano C, Arai M, Nitta T. 1991. Two distinct steps for spontaneous generation of subprotoplasts from a disintegrated Bryopsis cell. Plant Physiol., 96: 819–825.

    Article  Google Scholar 

  • Peltier J B, Friso G, Kalume D E, Roepstorff P, Nilsson F, Adamska I, Wijk K J. 2000. Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell, 12: 319–342.

    Article  Google Scholar 

  • Peumans W J, W J N VAN Damme. 1995. Lectin as plant defense proteins. Plant Physiol., 109: 347–352.

    Article  Google Scholar 

  • Rice K G, 1997. Glycoconjugate-medicated drug targeting. In:H. J. Gabius and S. Gabius, eds. Glycosciences: Status and Perspectives. Weinheim: Chapman & Hall, London. p. 471–483.

    Google Scholar 

  • Rogers D J, Hori K. 1993. Marine algal lectins: new developments. Hydrobiologia, 260/261: 589–593.

    Article  Google Scholar 

  • Sabine M, Ivan K, Constanze W, Herrmann R G, Klõsgen R B. 2001. The rieske Fe/S protein of the cytochrome b6/f complex in chloroplasts. J. Biol. Chem., 46: 42 761–42 766.

    Google Scholar 

  • Schauer R, Casalsst J, Corfield A P, Veh R W. 1988. Subcellular site of the biosynthesis of O-acetylated sialic acids in bovine submandibular gland. Glycocon. J., 5: 257–270.

    Article  Google Scholar 

  • Sharon N, Lis H. 1989. Lectins as cell recognition molecules. Science, 177: 949–959.

    Article  Google Scholar 

  • Shinji H, Masahide K, Kentaro M, Yoshio T, Shigehisa H. 2000. Multiplicity, structures, and endocrine and exocrine natures of eel fucose-binding lectins. J. Biol. Chem., 275: 33 151–33 157.

    Google Scholar 

  • Shiomi K, Yamanaka H, Kikuchi T. 1981. Purification and physicochemical properties of a hemagglutinin (GVA-1) in the red alga Gracilaria verrucosa. Bulletin of the Japanese Society of Scientific Fisheries, 47: 1 079–1 084.

    Google Scholar 

  • Sun J, Wang L, Wang B J, Guo Z Y, Liu M, Jiang K Y, Luo Z Y. 2007. Purification and characterisation of a natural Lectin from the serum of the shrimp Litopenaeus vannamei. Fish Shellfish Immun., 23: 292–299.

    Article  Google Scholar 

  • Tatewaki M, Nagata K. 1970. Surviving protoplasts in vitro and their development in Bryopsis. J. Phycol., 6: 401–403.

    Google Scholar 

  • Ueda R, Sugeta H, Degudei Y. 1991. Naturally occurring agglutinin in the hemolymph of Japanese coastal crustacean. Nippon Suisan Gakk., 57: 69–78.

    Google Scholar 

  • Walker M B, Roy L M, Coleman E, Voelker R, Barkan A. 1999. The maize tha4 gene functions in sec-independent protein transport in chloroplasts and is related to hcf106, tatA, and tatB. J. Cell. Biol., 147: 267–276.

    Article  Google Scholar 

  • Wang G C, Tseng C K. 2006. Culturing the segments of Bryopsis hypnoides Lamouroux thalli regenerated from protoplasts aggregation. J. Integrat. Plant. Biol., 48: 190–196.

    Article  Google Scholar 

  • Yao C L, Wu C G, Xiang J H, Dong B. 2005. Molecular cloning and response to laminarin stimulation of arginine kinase in haemolymph in Chinese shrimp, Fennero-penaeus chinensis. Fish Shellfish Immun., 19: 317–329.

    Article  Google Scholar 

  • Ye N H, Wang G C, Wang F Z, Zeng C K. 2005. Formation and growth of Bryopsis hypnoides Lamouroux Regenerated from its protoplasts. J. Integrat. Plant. Biol., 47: 856–862.

    Article  Google Scholar 

  • Yoon K S, Lee K P, Klotchkova T A, Kim G H. 2008. Molecular characterization of the lectin, Bryohealin, involved in protoplast regeneration of the marine alga Bryopsis plumosa (Chlorophyta). J. Phycol., 44: 103–112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangce Wang  (王广策).

Additional information

Supported by the Natural Science Foundation of China (Nos. 40806063, 30830015) and the National High Technology Research and Development Program of China (863 Program) (Nos.2007AA09Z406, 2006AA10A413)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, J., Wang, G., Lü, F. et al. Characterization of a new lectin involved in the protoplast regeneration of Bryopsis hypnoides . Chin. J. Ocean. Limnol. 27, 502–512 (2009). https://doi.org/10.1007/s00343-009-9157-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-009-9157-4

Keyword

Navigation