Skip to main content
Log in

Skewness of subsurface ocean temperature in the equatorial Pacific based on assimilated data

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The skewness of subsurface temperature anomaly in the equatorial Pacific Ocean shows a significant asymmetry between the east and west. A positive temperature skewness appears in the equatorial eastern Pacific, while the temperature skewness in the western and central Pacific is primarily negative. There is also an asymmetry of the temperature skewness above and below the climatological mean thermocline in the central and western Pacific. A positive skewness appears below the thermocline, but the skewness is negative above the thermocline. The distinctive vertical asymmetry of the temperature skewness is argued to be attributed to the asymmetric temperature response to upward and downward thermocline displacement in the presence of the observed upper-ocean vertical thermal structure. Because of positive (negative) second derivative of temperature with respect to depth below (above) the thermocline, an upward and a downward shift of the thermocline with equal displacement would lead to a negative temperature skewness above the thermocline but a positive skewness below the thermocline. In the far eastern equatorial Pacific, the thermocline is close to the base of the mixed layer, the shape of the upper-ocean vertical temperature profile cannot be kept. Positive skewness appears in both below the thermocline and above the thermocline in the far eastern basin. Over the central and eastern Pacific, the anomalies of the subsurface waters tend to entrain into the surface mixed layer (by climatological mean upwelling) and then affect the SST. Hence, the positive (negative) subsurface skewness in the far eastern (central) Pacific may favor positive (negative) SST skewness, which is consistent with the observational fact that more La Niña (El Niño) occur in the central (eastern) Pacific. The present result implies a possible new paradigm for El Niño and La Niña amplitude asymmetry in the eastern Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An S I, Jin F F. 2004. Nonlinearity and Asymmetry of ENSO. J. Climate, 17: 2 399–2 412.

    Article  Google Scholar 

  • Battisti D S, Hirst A C. 1989. Interannual variability in a tropical atmosphere-ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46: 1 687–1 712.

    Article  Google Scholar 

  • Burgers G, Stephenson D B. 1999. The “Normality” of El Niño. Geophys. Res. Lett., 26: 1 027–1 030.

    Article  Google Scholar 

  • Cane M A, Zebiak S E. 1985. A theory of El Niño and the Southern Oscillation. Science, 228: 1 084–1 087.

    Article  Google Scholar 

  • Carton J, Chepurin G, Cao X, Giese B. 2000. A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30: 294–309.

    Article  Google Scholar 

  • Chao J P, Yuan S Y, Chao Q C, Tian J W. 2003. The origin of warm water mass in “Warm Pool” subsurface of the Western Tropical Pacific-the analysis of the 1997∼1998 El Niño. Chinese Journal of Atmospheric Sciences, 27(12): 145–151. (in Chinese with English abstract)

    Google Scholar 

  • Gu D J, Wang D X, Li C H, Wu L X. 2004. Analysis of interdecadal variation of tropical Pacific thermocline based on assimilated data. Acta Oceanologica Sinica, 23(1): 61–67.

    Google Scholar 

  • Hong C C, Li T, Lin Ho, Kug J S. 2008. Asymmetry of the Indian Ocean dipole. Part I: Observational analysis. J. Climate, 21: 4 834–4 848.

    Google Scholar 

  • Jin F F. 1997. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54: 811–829.

    Article  Google Scholar 

  • Li H Y, Xie Q, Wang D X. 2006. Interannual variations of sub2surface salinity in the tropical Pacific Ocean. Acta Ocean. Sinica, 28(6): 5–11. (in Chinese with English abstract)

    Google Scholar 

  • Li C Y, Mu M Q. 1999. El Niño occurrence and subsurface ocean temperature anomalies in the Pacific Warm Pool. Chinese Journal of Atmospheric Sciences, 23(5): 513–521. (in Chinese with English abstract)

    Google Scholar 

  • Li T. 1997. Phase transition of the El Niño-Southern Oscillation: A stationary SST mode. J. Atmos. Sci., 54: 2 872–2 887.

    Google Scholar 

  • Lin Y H, You X B, Guan Y P. 2004. Interannual variability of mixed layer depth and heat storage of upper layer in the tropical Pacific Ocean. Acta Ocean. Sinica, 23(1): 31–39.

    Google Scholar 

  • McPhaden M J, co-authors. 1998. The Tropical Ocean-Global Atmosphere observing system: a decade of progress. J. Geophys. Res., 103: 14 169–14 240.

    Article  Google Scholar 

  • McPhaden M J. 1999. Genesis and evolution of the 1997–98 El Niño. Science, 283: 950–954.

    Article  Google Scholar 

  • McPhaden M J, Yu X. 1999. Equatorial Waves and the 1997–98 El Niño. Geophys. Res. Lett., 26(19): 2 961–2 964.

    Article  Google Scholar 

  • Philander S G H. 1990. El Niño, La Niña, and the Southern Oscillation, Academic Press, 293 pp.

  • Picaut J, Masia F, du Penhoat Y. 1997. An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277: 663–666.

    Article  Google Scholar 

  • Rasmusson E M, Carpenter T H. 1982. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110: 354–384.

    Article  Google Scholar 

  • Su J Z, Zhang R, Li T et al. 2009. Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate (In press)

  • Suarez M J, Schopf P S. 1988. A delayed action oscillator for ENSO. J. Atmos. Sci., 45: 3 283–3 287.

    Article  Google Scholar 

  • Sun J L, Chu P, Liu Q Y. 2004. The seasonal variation of undercurrent and temperature in the equatorial Pacific jointly derived from buoy measurement and assimilation analysis. Acta Ocean. Sinica, 23(1): 51–60.

    Google Scholar 

  • Weisberg R H, Wang C. 1997. Slow variability in the equatorial west-central Pacific in relation to ENSO. J. Climate, 10: 1 998–2 017.

    Article  Google Scholar 

  • White H G. 1980. Skewness, kurtosis and extreme values of Northern Hemisphere geopotential heights. Mon. Wea. Rev., 108: 1 446–1 445.

    Article  Google Scholar 

  • Zhang R, Chao J. 1993a. Unstable tropical air-sea interaction waves and their physical mechanisms. Adv. Atmos. Sci., 10: 61–70.

    Article  Google Scholar 

  • Zhang R, Chao J. 1993b. Mechanisms of Interannual Variations in a Simple Air-Sea Coupled Model in the Tropics. In: Ye D I et al., ed. Climate Variability China Meteorological Press, Beijing, China. p. 236–244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingzhi Su  (苏京志).

Additional information

Supported by the National Basic Research Program of China (973 Program)(No. 2007CB816005), the National Natural Science Foundation of China (No. 40706003), International S&T Cooperation Project of the Ministry of Science and Technology of China (No.2009DFA21430), and the COPES in China (GYHY200706005)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, J., Zhang, R., Li, T. et al. Skewness of subsurface ocean temperature in the equatorial Pacific based on assimilated data. Chin. J. Ocean. Limnol. 27, 600–606 (2009). https://doi.org/10.1007/s00343-009-9150-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-009-9150-y

Keyword

Navigation