Skip to main content
Log in

Three-dimensional fluorescence characteristics of dissolved organic matter produced by Prorocentrum donghaiense Lu

  • Chemistry
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Filtration and cross-flow ultrafiltration techniques were used to separate culture media of Prorocentrum donghaiense at the exponential growth, stationary and decline stages into <0.45 µm filtrate, 100 kDa-0.45 µm, 10–100 kDa and 1–10 kDa retentate and <1 kDa ultrafiltrate fractions. The fluorescence properties of different molecular weights of dissolved organic matter (DOM) were measured by excitation-emission matrix spectra. Protein-like and humic-like fluorophores were observed in the DOM produced by P. donghaiense. The central positions of protein-like fluorophores showed a red shift with prolonged growth duration, shifting from tyrosine-like properties at the exponential growth stage to tryptophan-like properties at the stationary and decline stages. The excitation wavelengths of protein-like fluorophores exhibited some change in the exponential growth and stationary stages with increased molecular size, but showed little change in the decline stage. However, the emission wavelengths in the decline stage exhibited a blue shift. Very distinct C type and A type peaks in humic-like fluorophores were observed. With a prolonged culture time, the intensities of both of the peaks became strong and the excitation wavelengths of peak A showed a red shift, while the A:C ratios fell. More than 94% of fluorescent DOM was in the lower than 1 kDa molecular weight fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen R F, Bada J L. 1992. The fluorescence of dissolved organic matter in seawater. Mar. Chem., 37: 191–221.

    Article  Google Scholar 

  • Coble P G, Green S, Blough N V, Gagosian R B. 1990. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature, 348(29): 432–435.

    Article  Google Scholar 

  • Coble P G, Schultz C A, Mopper K. 1993. Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques. Mar. Chem., 41: 173–178.

    Article  Google Scholar 

  • Coble P G. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem., 51: 325–346.

    Article  Google Scholar 

  • Coble P G, Del Castillo C E, Avril B. 1998. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep-Sea Res., II 45: 2 195–2 223.

    Article  Google Scholar 

  • Dargan A I, Khrapunov S N, Protas A F, Berdyshev G D. 1983. The change in maximum position of tyrosyl fluorescence spectra of R Nase A and histone dimer (H2A-H2B) under denaturation. Stud. Biophys., 96: 187–193.

    Google Scholar 

  • DeGrandpre M D, Vodacek A, Nelson R K, Bruce E J, Blough N V. 1996. Seasonal seawater optical properties of the U.S. Middle Atlantic Blight. J. Geophys. Res., 101: 22 727–22 736.

    Article  Google Scholar 

  • De Souza Sierra, M M, Donard O F X, Lamotte M, Belin C, Ewald M. 1994. Fluorescence spectroscopy of coastal and marine waters. Mar. Chem., 47: 127–144.

    Article  Google Scholar 

  • Eisinger J, Navon G. 1969. Fluorescence quenching and isotope effect of tryptophan. J. Chem. Phys., 50: 2 069–2 077.

    Article  Google Scholar 

  • Galla H J, Warnke M, Scheit K H. 1985. Incorporation of the antimicrobial protein seminalplasmin into lipid bilayer membranes. Eur. Biophys. J., 12: 211.

    Article  Google Scholar 

  • Guillard R R. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith W L, Chanley M H eds, Culture of Marine Invertebrate Animals. Plenum Press, New York. USA. p: 29–60.

    Google Scholar 

  • Harvey G R, Boran D A, Chesal L A, Tlkar J M. 1983. The structure of marine fulvic and humic acids. Mar. Chem., 12: 119–132.

    Article  Google Scholar 

  • Hayase K, Shinosuka N. 1995. Vertical distribution of fluorescence organic matter along with AUO and nutrients in the Equatorial Pacific. Mar. Chem., 48: 283–290.

    Article  Google Scholar 

  • Hayase K H, Tsubota I, Sunada, S. Goda. Yamazaki H. 1988. Vertical distribution of fluorescence organic matter in the North Pacific. Mar. Chem., 25: 273–281.

    Article  Google Scholar 

  • Hoge F E, Wright C W, Swift R N, Yungel J K, Berry R E, Mitchell R. 1998. Fluorescence signature of an iron enriched phytoplankton community in the eastern equatorial Pacific Ocean. Deep-sea Res., II 45: 1 073–1 082.

    Google Scholar 

  • Ji N Y, Zhao W H, Cui X, Wang J T, Miao H, Wang L. 2004. Fluorescence characterization of dissolved organic matter in Jiaozhou Bay. Periodical of Ocean University of China, 34(Sup.): 197–203. (in Chinese with English abstract)

    Google Scholar 

  • Ji N Y, Zhao W H, Wang J T, Cui X, Miao H. 2006. Fluorescence characteristics of dissolved organic matter during algal bloom in Jiaozhou Bay. Chinese Journal of Environmental Science, 27(2): 257–262. (in Chinese with English abstract)

    Google Scholar 

  • Kalle K. 1949. Fluoreszenz und Gelbstoff im Bottnischen und Finnischen Meerbusen. Dtsch. Hydrogr. Z., 2: 117–124.

    Article  Google Scholar 

  • Lu K D, Goebel J. 2001. Five red tide species in genus Prorocentrum including the description of Prorocentrum donghaiense Lu sp. nov. from the East China Sea. Chin. J. Oceanol. and Limnol., 19(4): 337–344.

    Article  Google Scholar 

  • Matthews B J H, Jones A C, Theodorou N K, Tudhope A W. 1996. Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs. Mar. Chem., 55: 317–332.

    Article  Google Scholar 

  • Mayer L M, Schik L L, Loder T C. 1999. Dissolved protein fluorescence in two Maine estuaries. Mar. Chem., 64: 171–179.

    Article  Google Scholar 

  • Mopper K, Schultz C A. 1993. Fluorescence as a possible tool for studying the natural and water column distribution of DOC components. Mar. Chem., 41: 229–238.

    Article  Google Scholar 

  • Parlanti P, Worz K, Geoffroy L, Lamotte M. 2000. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone subject to anthropogenic inputs. Org. Geochem., 31: 1 765–1 781.

    Article  Google Scholar 

  • Peterson H T. 1989. Determination of an Isochrysis galbana algal bloom by L-tryptophan fluorescence. Mar. Pollut. Bull., 20(9): 447–451.

    Article  Google Scholar 

  • Rochelle-Newall E J, Fisher T R, Fan C, Gilbert P M. 1999. Dynamics of chromophoric dissolved organic matter and dissolved organic carbon in experimental mesocosms. Int. J. Remote Sens., 20: 627–641.

    Article  Google Scholar 

  • Rochelle-Newall E J, Fisher T R. 2002. Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: an investigation into the role of phytoplankton. Mar. Chem., 77: 7–21.

    Article  Google Scholar 

  • Stedmon C A, Markager S, Bro R. 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem., 82: 239–254.

    Article  Google Scholar 

  • Stedmon C A, Markager S. 2005a. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol. Oceanogr., 50(2): 686–697.

    Article  Google Scholar 

  • Stedmon C A, Markager S. 2005b. Tracing the production and degradation of authochronous fractions of dissolved organic matter by fluorescence analysis. Limnol. Oceanogr., 50(5): 1 415–1 426.

    Google Scholar 

  • Traganza E D. 1969. Fluorescence excitation and emission spectra of dissolved organic matter in seawater. Bull. Mar. Sci., 19: 897–904

    Google Scholar 

  • Wolfbeis O S. 1985. The fluorescence of organic natural products. In: Schulman J J ed., Molecular Luminescence Spectroscopy, Methods and Applications: Part I. Wiley, New York. p. 79–136.

    Google Scholar 

  • Yamashita Y, Tanoue E. 2003. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Mar. Chem., 82: 255–271.

    Article  Google Scholar 

  • Zhao W H, Wang J T, Cui X, Ji N Y. 2006. Research on fluorescence excitation and emission matrix spectra of dissolved organic matter in phytoplankton growth process. Chinese High Technology Letters, 16(4): 425–430. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Zhao  (赵卫红).

Additional information

Supported by the High Technology Research and Development Program of China (863 Program) (Nos. 2006AA09Z180 and 2004AA639790), the National Natural Science Foundation of China (No. 40106013), and the National Basic Research Program of China (973 Program) (No. 2001CB409703)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, W., Wang, J. & Chen, M. Three-dimensional fluorescence characteristics of dissolved organic matter produced by Prorocentrum donghaiense Lu. Chin. J. Ocean. Limnol. 27, 564–569 (2009). https://doi.org/10.1007/s00343-009-9141-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-009-9141-z

Keyword

Navigation