Skip to main content
Log in

3-D reconstruction of coastal bathymetry from AIRSAR/POLSAR data

  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

This paper introduces a new method for reconstructing three-dimensional (3D) coastal bathymetry changes from Airborne AIRSAR/POLSAR synthetic aperture data. The new method is based on integration between fuzzy B-spline and Volterra algorithm. Volterra algorithm is used to simulate the ocean surface current from AIRSAR/POLSAR data. Then, the ocean surface current information used as input for continuity equation to estimate the water depths from AIRSAR/POLSAR data. This study shows that 3D ocean bathymetry can be reconstructed from AIRSAR/POLSAR data with root mean square error of ±0.03 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpers, W. and I. Hennings, 1984. A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar, J. Geophys Res. 89: 10 529–10 546.

    Article  Google Scholar 

  • Anile, A. M., 1997. Report on the activity of the fuzzy soft computing group, Technical Report of the Dept. of Mathematics, University of Catania, March 1997, pp. 10.

  • Anile, A. M., S. Deodato and G. Privitera, 1995. Implementing fuzzy arithmetic, Fuzzy Sets and Systems, 72: 123–156.

    Article  Google Scholar 

  • Anile, A. M., G. Gallo and I. Perfilieva, 1997. Determination of Membership Function for Cluster of Geographical data. Genova, Italy: Institute for Applied Mathematics, National Research Council, University of Catania, Italy, October 1997, 25p., Technical Report No.26/97.

    Google Scholar 

  • Forster, B. C., 1985. Mapping Potential of Future Spaceborne Remote Sensing System. Procs of 27th Australia Survey Congress, Alice Springs, Institution of Surveyors, Australia, Australia, pp. 109–117.

  • Fuchs, H. Z., M. Kedem and S. P. Uselton, 1977. Optimal Surface Reconstruction from Planar Contours. Comm. of the ACM 20: 693–702.

    Article  Google Scholar 

  • Guenther, G. C., A. G. Cunningham, P. E. LaRocque and D. J. Reid, 2000. Proceedings of EARSeL-SIG-Workshop LIDAR,Dresden/FRG, EARSeL, Strasbourg, France, June 16–17, 2000.

  • Hesselmans, G. H., G. J. Wensink C. G. V. Koppen, C. Vernemmen and C. V Cauwenberghe, 2000. Bathymetry assessment Demonstration off the Belgian Coast-Babel. The Hydro. J. 96: 3–8.

    Google Scholar 

  • Inglada, J. and R. Garello, 1999. Depth estimation and 3D topography reconstruction from SAR images showing underwater bottom topography signatures. In Proceedings of Geoscience and Remote Sensing Symposium, 1999, IGARSS’99, Hamburg, Germany, 28 June–2 July 1999, IEEE Tran. Geos. and Rem. Sens. USA. 2: 956–958.

    Google Scholar 

  • Inglada, J. and R. Garello, 2002. On rewriting the imaging mechanism of underwater bottom topography by synthetic aperture radar as a Volterra series expansion. IEEE J. Ocean Eng. 27: 665–674.

    Article  Google Scholar 

  • Keppel, E., 1975. Approximation Complex Surfaces by Triangulations of Contour Lines. IBM Journal of Research Developmen 19: 2–11.

    Google Scholar 

  • Lee, J. S., D. T. L. Schuler, E. Ainsworth, D. Krogager, M. A. Kasilingam and W. M. Boerner, 2002. On the estimation of radar polarization orientation shifts induced by terrain slopes, IEEE Tran. Geos. and Rem. Sens. 40: 30–41.

    Article  Google Scholar 

  • Maeda, J., T. Iizawa, I. Tohru and Y. Suzuki, 1997. Accurate segmentation of noisy images using anisotropic diffusion and linking of boundary edge. IEEE TENCON—Speech and Image Technology for Computing and Telecommunications 1: 279–282.

    Google Scholar 

  • Maged, M., 1994. Coastal Water Circulation off Kuala Terengganu, Malaysia. MSc. Thesis Universiti Pertanian Malaysia (now Universiti Putra Malaysia).

  • Maged, M., 2005. Fuzzy B-spline and Volterra algorithms for modelling surface current and ocean bathymetry from polarised TOPSAR data. Asian J. Inf. Tech. 4: 1–6.

    Google Scholar 

  • Melba, M., S. Kumar, M. R. Richard, J. C. Gibeaut and N. Amy, 1999. Fusion of Airborne polarmetric and interferometric SAR for classification of coastal environments. IEEE Tran. Geos. and Rem. Sens. 37: 1 306–1 315.

    Google Scholar 

  • Mills, G. B., 2006. NOAA, Office of Coast Survey, Hydrographic Surveys Division, 1315 East-West Highway, Station 6859, Silver Spring, Maryland, USA 20910-3282. (Url: http://chartmaker.ncd.noaa.gov/hsd/ihr-s44.pdf, accessed December 2006).

  • Romeiser, R. and W. Alpers, 1997. An improved composite surface model for the radar backscattering cross section of the ocean surface, 2, Model response to surface roughness variations and the radar imaging of underwater bottom topography, J. Geophys. Res. 102: 25 251–25 267.

    Google Scholar 

  • Shuchman, R. A., D. R. Lyzenga and G. A. Meadows, 1985. Synthetic aperture radar imaging of ocean-bottom topography via tidal-current interactions: theory and observations, Int. J. Rem. Sens 6: 1 179–1 200.

    Article  Google Scholar 

  • Vogelzang, J., 1997. Mapping submarine sand waves with multiband imaging radar, 1, Model development and sensitivity analysis, J. Geophys Res. 102: 1 163–1 181.

    Google Scholar 

  • Vogelzang, J., G. J. Wensink, C. J. Calkoen and M. W. A. van der Kooij, 1997. Mapping submarine sand waves with multiband imaging radar, 2, Experimental results and model comparison, J. Geophys Res. 102: 1 183–1 192.

    Google Scholar 

  • Vogelzang, J., G. J. Wensink, G. P. de Loor, H. C. Peters and H. Pouwels, 1992, Sea bottom topography with X band SLAR: the relation between radar imagery and bathymetry, Int. J. Rem. Sens. 13: 1 943–1 958.

    Article  Google Scholar 

  • Wensink, H. and G. Campbell, 1997. Bathymetric map production using the ERS SAR. Backscatter 8(1): 17–22.

    Google Scholar 

  • Yu, Y. and T. A. Scott, 2002. Speckle reducing anisotropic diffusion. IEEE Tran. Geos. and Rem. Sens. 11: 1 260–1 270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maged Marghany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marghany, M., Hashim, M. & Cracknell, A.P. 3-D reconstruction of coastal bathymetry from AIRSAR/POLSAR data. Chin. J. Ocean. Limnol. 27, 117–123 (2009). https://doi.org/10.1007/s00343-009-0117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-009-0117-9

Keyword

Navigation