Skip to main content
Log in

Positive effect of porphyrans on the lifespan and vitality of Drosophila melanogaster

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The effects of degraded porphyran (P1) and natural porphyran (P) on the lifespan and vitality of Drosophila melanogaster are studied. The porphyrans, added daily to the food medium at 0.2% and 1% concentrations, can significantly increase the lifespan in average of 55.79 and 58.23 d in 0.2% P1 diet females and 1% P1 diet_males, extending by 12.29% and 8.60% over the corresponding controls, respectively. The effects of porphyrans on D. melanogaster in heat-stress condition were also examined, and found a remarkable increase in survival time. The results which are consistently associated with the use of porphyrans are related to their free radical scavenger action. Considerable increase in vitality demonstrated that vitalities of middle-aged fly (assessed by measuring their mating capacity) was observed after porphyrans addition. Therefore, porphyrans are effective in reducing the rate of aging, and P1 in low molecular weight is better than natural P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arking R., 1998. Biology of Aging: Observations and Principles, 2nd edition. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Bonilla, E., S. Medina-Leendertz and S. Diaz, 2002. Extension of life span and stress resistance of Drosophila melanogaster by long-term supplementation with melatonin. Exp. Gerontol. 37: 629–638.

    Article  Google Scholar 

  • Brack, C., E. Bechter-Thuring and M. Labuhn, 1997. N-acetylcysteine. slows down aging and increase the life span of Drosophila. melanogaster. Cell. Mol. Life Sci. 53: 960–966.

    Google Scholar 

  • Davies, S., R. Kattel, B. Bhatia, A. Petherwick and T. Chapman, 2005. The effect of diet, sex and mating status on longevity in Mediterranean fruit flies (Ceratitis capitata), Diptera: Tephritidae. Exp. Gerontol. 40: 784–792.

    Article  Google Scholar 

  • Dudas, S. P. and R. Arking, 1995. A coordinate upregulation of antioxidant gene activities is associated with the delayed onset of senescence in a long-lived strain of Drosophila. J. Gerontol. A. Biol. Sci. Med. Sci. 50: B117–B127.

    Google Scholar 

  • Fleming, J. E., I. Reveillaud and A. Niedzwieeki, 1992. Role of oxidative stress in Drosophila aging. Mut. Res. 275: 267–79.

    Google Scholar 

  • Fridovich, I., 1975. Superoxide dismutases. Ann. Rev. Biochem. 44: 147–159.

    Article  Google Scholar 

  • Harman, D., 1956, Aging: A Theory Based on Free Radical and Radiation Chemistry. J. Gerontol. 11: 298–300.

    Google Scholar 

  • Izmaylov, D. M. and L. K. Obukhova, 1999. Geroprotector effectiveness of melatonin: investigation of lifespan of Drosophila melanogaster. Mech. Ageing Dev. 106: 233–240.

    Article  Google Scholar 

  • Miquel, J., P. R., Lundgren, K. G. Bensch and H. Atlan. 1976. Effects of temperature on the life-span, vitality and fine structure of Drosophila melanogaster. Mech. Ageing Dev. 5: 347–370.

    Article  Google Scholar 

  • Miyatake, T., T. Chapman and L. Partridge, 1999. Mating induced inhibition of remating in female Mediterranean fruit fly Ceratitis capitata. J. Insect Physiol. 45: 1021–1028.

    Article  Google Scholar 

  • Muller, H. G., J. L. Wang, W. B. Capra, P. Liedo and J. R. Carey, 1997. Early mortality surge in protein deprived females causes reversal of sex differential of life expectancy in Mediterranean fruit flies. Proc. Natl. Acad. Sci. USA. 94: 2 762–2 765.

    Google Scholar 

  • Parkes, T. L., A. J. Elia, D. Dickinson, A. J. Hilliker, J. P. Phillips and G. L. Boulianne, 1998. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat. Genet. 19: 171–174.

    Article  Google Scholar 

  • Rose, M. R., L. N. S. U. Vu, J. L. Park and J. L. Graves, Jr 1992. Selection on stress resistance increases longevity in Drosophila melanogaster. Exp. Gerontol. 27: 241–250.

    Article  Google Scholar 

  • Ruddle, D. L., L. S. Yengoyan, J. Miquel, R. Marcuson and J. E. Fleming, 1988. Propyl gallate delays senescence in Drosophila melanogaster. Age 11: 54–58.

    Article  Google Scholar 

  • Simon, A. F., C. Shih, A. Mack and S. Benzer, 2003. Steroid Control of Longevity in Drosophila melanogaster. Science 299: 1 407–1 410.

    Article  Google Scholar 

  • Service, P. M., E. W. Hutchinson, M. D. Mackinley and M. R. Rose, 1985. Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiol. Zool. 58: 380–389.

    Google Scholar 

  • Sun, J. and J. Tower 1999. FLP Recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the lifespan of adult Drosophila melanogaster flies. Mol. Cell. Bio. 19: 216–228.

    Google Scholar 

  • Tan, D. X., L. D. Chen, B. Poeggeler, L. C. Manchester and R. J. Reiter, 1993. Melatonin: a potent, endogenous hydrexyl radical scavenger. Endocr. J. 1: 57–60.

    Google Scholar 

  • Tatar, M., A. Bartke and A. Antebi, 2003. The endocrine regulation of aging by insulin-like signals. Science 299: 1 346–1 351.

    Article  Google Scholar 

  • Yashizawa, Y., A. Enomoto, H. Todoh, A. Ametani and S. Kaminogawa, 1993. Activation of murine macrophages by polysaccharide fractions from marine alga (Porphyra yezoensis). Biosci. Biotech. Biochem. 57: 1 862–1 866.

    Google Scholar 

  • Yashizawa, Y., A. Ametani, J. Tsunehiro, K. Numura, M. Itoh, F. Fukui and S. Kaminogawa, 1995. Macrophage stimulation activity of the polysaccharide fraction from a marine alga (Porphyra yezoensis): structure-function relationships and improved solubility. Biosci. Biotech. Biochem. 59: 1 933–1 937.

    Google Scholar 

  • Zhang, Q., P. Yu, Z. Li, H. Zhang, Z. Xu and P. Li, 2003a. Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanesis. J. Appl. Phycol. 15: 305–310.

    Article  Google Scholar 

  • Zhang, Q., N. Li, G. Zhou, X. Lu, Z. Li and Z. Xu, 2003b. In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacol. Res. 48: 151–155.

    Article  Google Scholar 

  • Zhang, Q., N. Li, X. Liu, Z. Zhao, Z. Li and Z. Xu, 2004. The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Carbohydr. Res. 339: 105–111.

    Article  Google Scholar 

  • Zhao, T., Q. Zhang, H. Qi, H. Zhang, X. Niu, Z. Xu and Z. Li, 2006. Degradation of porphyran from Porphyra haitanensis and the antioxidant activities of the degraded porphyrans with different molecular weights. Int. J. Biol. Macromol. 38: 45–50

    Article  Google Scholar 

  • Zhou, H. and Q. Chen, 1989. The cytoprotection of polysaccharide from Porphyra yezoenisis Ueda. J. Chin. Pharma. Uni. 20: 340–343.

    Google Scholar 

  • Zhou, H. and Q. Chen, 1990. Anticoagulant and antihyperlipedemic effects of polysaccharide from Porphyra yezoensis. J. China. Pharm. Univ. 21: 358–360.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Quanbin  (张全斌).

Additional information

Supported by the Innovative Key Project of the Chinese Academy of Sciences (KZCX-YW-209).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, T., Zhang, Q., Qi, H. et al. Positive effect of porphyrans on the lifespan and vitality of Drosophila melanogaster . Chin. J. Ocean. Limnol. 25, 373–377 (2007). https://doi.org/10.1007/s00343-007-0373-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-007-0373-5

Keywords

Navigation