Skip to main content
Log in

Antioxidant enzyme activities in different genders and tissues of amphioxus Branchiostoma belcheri tsingtauense

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Information regarding antioxidant enzymes in amphioxus remains lacking, and this study was carried out to examine the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in different genders and tissues of amphioxus Branchiostoma belcheri tsingtauense. Results show that (1) CuZn-SOD, CAT and GPX activities in the whole amphioxus B. belcheri tsingtauense were basically at the same levels in male and female amphioxus, whereas both T-SOD and Mn-SOD activities in male amphioxus were significantly higher than that in the female (P<0.05); (2) The testis had significantly higher T-SOD and CuZn-SOD activities than the ovary (P<0.05); (3) CuZn-SOD activity was undetectable in the guts of male and female amphioxus; (4) For both male and female amphioxus, the activities of CAT and GPX in the gonads including testis and ovary were the lowest (P<0.05) among the tissues examined; (5) The gut and gill had the same level GPX activities while the gut had a higher CAT activity; (6) There was no clear difference in CAT and GPX activities in the corresponding tissues between male and female amphioxus. The study on SOD, CAT and GPX activities in different genders and tissues of the protochordate provides data for future comparison of amphioxus antioxidant enzymes with those of invertebrates and vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi, H., 1984. Catalase in vitro. Methods Enzymol. 105: 121–126.

    Article  Google Scholar 

  • Aksnes, A. and L. R. Njaa, 1981. Catalase, glutathione peroxidase and superoxide dismutase in different fish species. Comp. Biochem. Physiol. 69B: 893–896.

    Google Scholar 

  • Arun, S. and P. Subramanian, 1998. Antioxidant enzymes in freshwater prawn Macrobrachium malcolmsonii during embryonic and larval development. Comp. Biochem. Physiol. 121B: 273–277.

    Google Scholar 

  • Bannister, J. V., W. H. Bannister and G. Rotilio, 1987. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit. Rev. Biochem. 22(2): 111–80.

    Google Scholar 

  • Bolzan, A. D., M. S. Bianchi and N. O. Bianchi, 1997. Superoxide dismutase, catalase and glutathione peroxidase activities in human blood: Influence of sex, age and cigarette smoking. Clin. Biochem. 30(6): 449–454.

    Article  Google Scholar 

  • Cohen, G., D. Dembiec and J. Marcus, 1970. Measurement of catalase activity in tissue extracts. Anal. Biochem. 34: 30–38.

    Article  Google Scholar 

  • Elsner, R., S. Oyasaeter, R. Almaas and O. D. Saugstad, 1998. Diving seals, ischemia-reperfusion and oxygen radicals. Comp. Biochem. Physiol. 119A(4): 975–980.

    Google Scholar 

  • Filho, D. W., C. Giulvi and A. Boveris, 1993. Antioxidant defenses in marine fish—I. Teleosts. Comp. Biochem. Physiol. 106C: 409–413.

    Google Scholar 

  • Gamble, S. C., P. S. Goldfarb, C. Porte and D. R. Livingstone, 1995. Glutathione peroxidase and other antioxidant enzyme function in marine invertebrates (Mytilus edulis, Pecten maximus, Carcinus maenas and Asterisa rubens). Mar. Environ. Res. 39: 191–195.

    Article  Google Scholar 

  • Geller, B. L. and D. R. Winge, 1983. A method for distinguishing Cu,Zn-and Mn-containing superoxide dismutases. Anal. Biochem. 128(1): 86–92.

    Article  Google Scholar 

  • Geracitano, L., J. M. Monserrat and A. Bianchini, 2002. Physiological and antioxidant enzyme responses to acute and chronic exposure of Laeonereis acuta (polychaeta, Nereididae) to copper. J. Exp. Mar. Biol. Ecol. 277: 145–156.

    Article  Google Scholar 

  • Gil, P., M. Alonso-Bedate and G. Barja de Quiroga, 1987. Different levels of hyperosia reversibly induce catalase activity in amphibian tadpoles. Free Radiac. Biol. Med. 3(2): 137–146.

    Google Scholar 

  • Hawkrighe, J. M., R. K. Pipe and B. E. Brown, 2000. Localization of antioxidant enzymes in the cnidarians Anemonia viridis and Goniopora stokesi. Mar. Biol. 137: 1–9.

    Article  Google Scholar 

  • Hermes-Lima, M. and K. B. Storey, 1998. Role of antioxidant defenses in the tolerance of severe dehydration by anurans. The case of the leopard frog Rana pipiens. Mol. Cell Biochem. 189(1–2): 79–89.

    Article  Google Scholar 

  • Kelner, M. J. and N. M. Alexander, 1986. Inhibition of erythrocyte superoxide dismutase by diethyldithiocarbamate also results in oxyhemoglobin-catalyzed glutathione depletion and methemoglobin production. J. Biol. Chem. 261(4): 1 636–1 641.

    Google Scholar 

  • Livingstone, D. R., 1991. Organic xenobiotic metabolism in marine invertebrate. Adv. Comp. Envir. Physiol. 7: 45–185.

    Google Scholar 

  • Lowry, O. H., N. J. Rosebrough, L. Farr and R. J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 256–275.

    Google Scholar 

  • McCord, J. M., 1976. Iron-and manganese-containing superoxide dismutases: structure, distribution and evolutionary relationships. Adv. Exp. Med. Biol. 74: 540–550.

    Google Scholar 

  • Mohandas, J., J. J. Marshall, G. G. Duggin, J. S. Horvath and D. J. Tiller, 1984. Low activities of glutathione-related enzymes as factors in the genesis of urinary bladder cancer. Cancer Res. 44(11): 5 086–5 091.

    Google Scholar 

  • Montesano, L., M. T. Carri, P. Mariottini, F. Amaldi and G. Rotilio, 1989. Developmental expression of Cu, Zn superoxide dismutase in Xenopus. Constant level of the enzyme in oogenesis and embryogenesis. Eur. J. Biochem. 186(1–2): 421–426.

    Article  Google Scholar 

  • Morris, S. M. and J. T. Albright, 1984. Catalase, glutathione peroxidase and superoxide dismutase in the rete mirabile and gas gland epithelium of six species of marine fishes. J. Exp. Zool. 232(1): 29–39.

    Article  Google Scholar 

  • Niyogi, S., S. Biswas, S. Sarker and A. G. Datta, 2001. Seasonal variation of antioxidant and biotransformation enzymes in barnacle, Balanus balanoides, and their relation with polyaromatic hydrocarbons. Mar. Environ. Res. 52(1): 13–26.

    Article  Google Scholar 

  • Oyanagui, Y., 1984. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal. Biochem. 142(2): 290–296.

    Article  Google Scholar 

  • Rudneva, I. I., 1997. Blood antioxidant system of black sea elasmobranch and teleosts. Comp. Biochem. Physiol. 118C: 255–260.

    Google Scholar 

  • Shick, J. M. and J. A. Dyken, 1985. Oxygen detoxification in algal-invertebrate symbioses from the Great Barrier Reef Ocecologia 66: 33–41.

    Article  Google Scholar 

  • Sies, H. and E. Cadenas, 1985. Oxidative stress: damage to intact cells and organs. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 311(1 152): 617–631.

    Google Scholar 

  • Sies, H., 1993. Strategies of antioxidant defense. Eur. J. Biochem. 215(2): 213–9.

    Article  Google Scholar 

  • Storey, K. B., 1996. Oxidative stress: animal adaptations in nature. Braz. J. Med. Biol. Res. 29(12): 1 715–1 733.

    Google Scholar 

  • Viarengo, A., L. Canesi, M. Pertica and D. R. Livingstone, 1991. Seasonal variations in the antioxidant defence systems and lipid peroxidation of the digestive gland of mussels. Comp. Biochem. Physiol. 100C(1–2): 187–190.

    Google Scholar 

  • Wdzieczak, J., G. Zalesna, A. Bartkowiak, H. Witas and W. Leyko, 1981. Comparative studies on superoxide dismutase, catalase and peroxidase levels in erythrocytes of different fish species. Comp. Biochem. Physiol. 69B: 357–358.

    Google Scholar 

  • Wdzieczak, J., G. Zalesna, E. Wujec and G. Peres, 1982. Comparative studies on superoxide dismutase, catalase and peroxidase levels in erythrocytes and livers of different freshwater and marine fish species. Comp. Biochem. Physiol. 73B: 361–365.

    Google Scholar 

  • Wilson, G. N., 1991. Structure-function relationships in the peroxisome: implications for human disease. Biochem. Med. Metab. Biol. 46(3): 288–98.

    Article  Google Scholar 

  • Winston, G. W. and R. T. Di Giulio, 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat. Toxicol. 19: 137–161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Shicui  (张士璀).

Additional information

Supported by the Ministry of Science and Technology (MOST) of China (No.2006CB101805).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, R., Zhang, S., Wang, C. et al. Antioxidant enzyme activities in different genders and tissues of amphioxus Branchiostoma belcheri tsingtauense . Chin. J. Ocean. Limnol. 25, 73–77 (2007). https://doi.org/10.1007/s00343-007-0073-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-007-0073-1

Key words

Navigation