Skip to main content
Log in

Multilayer distribution of carbon dioxide system in surface water of the Yellow Sea in spring

  • Chemistry
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Surface water can be divided into three layers from top downward: surface microlayer (SML, thickness ⩽ 50 μm), subsurface layer (SSL, ≈25 cm) and surface layer (SL, 1–5m), among which the SML plays an important role on sea-air interaction because of its unique physical-chemical property. Carbon dioxide system including DIC (dissolved inorganic carbon), Alk (alkalinity), pH and pCO2 (partial pressure of CO2) in multilayered waters of the Yellow Sea was studied for the first time in March and May 2005. The results show that: DIC and Alk are obviously enriched in SML. The contents of DIC, Alk and pCO2 become lower in turn from SML, SSL to SL, higher in March and lower in May, whereas for pH it was opposite. The relationship between DIC and Alk is clearly positive, but negative between pH and pCO2. Meanwhile, pCO2 and temperature/salinity is also in positive relation, pCO2 decreases with latitude increase. DIC and Alk show a similar variation trend with the maximum at 02:00–03:00, but pH and pCO2 show an opposite pattern. In addition, the distribution patterns are similar to each other in the three layers. The Yellow Sea is shown to be a sink of atmospheric CO2 in spring by two methods: (1) comparing pCO2 in seawater and atmosphere; (2) turning direction of “pH-depth” curve. Calculation on the base of pCO2 data in SML in four models shows that carbon flux in spring in the area was about −6.96×106 t C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borgne, R. L., R. A. Feely and D. J. Mackey, 2002. Carbon fluxes in the equatorial Pacific: a synthesis of the JCOFS programme. Deep-Sea Res II 49: 2 425–2 442.

    Google Scholar 

  • Bozec, Y., H. Thomas, K. Elkalay et al., 2005. The continental shelf pump for CO2 in the North Sea-evidence from summer observation. Mar. Chem. 93: 131–147.

    Article  Google Scholar 

  • Christopher, L. S., A. Richard, G. Nicolas et al., 2004. The oceanic sink for anthropogenic CO2. Science 305: 367–371.

    Article  Google Scholar 

  • Cai, W. J. and M. H. Dai, 2004. Comment on “Enhanced open ocean storage of CO2 from shelf sea pumping”. Science 306: 1 477.

    Article  Google Scholar 

  • Cai, W. J., L. R. Pometoy, M. A. Moran et al., 1999. Oxygen and carbon dioxide mass balance in the estuarine/intertidal marsh complex of five rivers in the Southeastern. Limnol. Oceanogr. 44: 639–649.

    Google Scholar 

  • Cai, W. J., J. W. William, Y. C. Wang et al., 2000. Intertidal marsh as a source of dissolved inorganic carbon and a sink of mitrate in the Satilla River-estrarine complex in the southeasten. Limnol. Oceanogr. 45: 1 743–1 752.

    Article  Google Scholar 

  • Cai, W. J. and Y. C. Wang, 1998. The chemistry fluxes and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol. Oceanogr. 43: 657–668.

    Article  Google Scholar 

  • DeGrandpre, M. D., G. J. Olbu, C. M. Beatty et al., 2002. Air-sea CO2 fluxes on the US Middle Atlantic Bight. Deep-Sea Res II 49: 4 355–4 367.

    Article  Google Scholar 

  • Dickson, A., 1981. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Res. 28: 609–623.

    Article  Google Scholar 

  • Dickson, A. G. and F. J. Millero, 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. Part A. Oceanographic Research Papers 34(10): 1 733–1 743.

    Google Scholar 

  • Duce, R. A., P. S. Liss, R. Barber et al., 2000. Surface Ocean-Lower Atmosphere Study (SOLAS), Science Plan, SOLAS Open Science Conference, Damp, Germany 21 December, 83p.

  • Gago, J., M. Gilcoto, F. F. Perez et al., 2003. Short-term variability of CO2 I seawater and air-sea CO2 fluxes in a coastal upwelling system. Mar. Chem. 80: 247–264.

    Article  Google Scholar 

  • Hu, D. X. and Z. Yang, 2001. The Key Process of Oceanic Flux in the East China Sea. Ocean Press, Beijing, China, 204p. (in Chinese)

    Google Scholar 

  • Johnson, K. M., A. G. Dickson, G. Eischeid et al., 1998. Coulmetric total carbon dioxide analysis for marine studies: assessment of the quality of total inorganic carbon measurements made during the US-Indian Ocean CO2 Survey 1994–1996. Mar. Chem. 63: 21–37.

    Article  Google Scholar 

  • Keir, R. S., G. Rehder and M. Frankignoulle, 2001. Partial pressure and air-sea flux of CO2 in the Northeast Atlantic during September 1995. Deep-Sea Res II 48: 3 179–3 189.

    Article  Google Scholar 

  • Kim, K. R., 1999. Air-sea exchange of the CO2 in the Yellow Sea. The 2nd Korea-China Symposium on the Yellow Sea Research, Seoul.

  • Li, J., H. B. Ding, Z. J. Wu et al., 1998. Determination of apparent sampling thickness of sea surface microlayer. Chin. J. Oceanol. Limnol. 16(2): 177–182.

    Google Scholar 

  • Liss, P. S. and L. Merlivat, 1986. Air-sea gas exchange rates: introduction and synthesis. In: The Role of Air-sea Exchange in Geochemical Cycling. Adv. Sci. Inst. Ser. P. Buat-Menard, ed. Reidel D., Norwell, Mass.

    Google Scholar 

  • Macdonald, R. W., C. S. Wong and P. E. Erickson, 1987. The distribution of nutrients in the southeastern Beaufort Sea: Implications for water circulation and primary production. J. Geophys Res. 92: 2 939–2 952.

    Google Scholar 

  • Mehrbach, C., C. H. Culberson, J. E. Hawley et al., 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18(6): 897–907.

    Google Scholar 

  • Millero, F. J., A. G. Dickson, G. Eischeid et al., 1998. Assessment of the quality of the shipboard measurements of total alkalinity on the WOCE Hydrographic Program Indian Ocean CO2 survey cruises 1994–1996. Mar. Chem. 63: 9–20.

    Article  Google Scholar 

  • Millero, F. J., K. Lee and M. Roche, 1998. Distribution of alkalinity in the surface waters of the major oceans. Mar. Chem. 60: 111–130.

    Article  Google Scholar 

  • Peng, T. H. and T. Takahashi, 1989. Carbon Dioxide in the Ocean. Under contract PE-ACO5-840R31400, April, publication No.3311, Environmental Sciences Division. ORNL.

  • Petit, J. R., J. Jouzel, D. Raynaud et al., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core Antarctica. Nature 399: 429–436.

    Article  Google Scholar 

  • Sabine, C. L., R. A. Feely, N. Gruber et al., 2004. The oceanic sink for anthropogenic CO2. Science 305: 367–371.

    Article  Google Scholar 

  • Shen, Z. L. and M. X. Liu, 1997. Study of carbon dioxide in seawater of the Jiaozhou Bay. Acta Oceanologica Sinica 19(2): 115–120. (in Chinese)

    Google Scholar 

  • Siegenthaler, U and J. L. Sarmiento, 1993. Atmospheric carbon dioxide and the ocean. Nature 365: 119–125.

    Article  Google Scholar 

  • Sun, Y. M. and J. M. Son, 2002. Advances in Biogeochemical Process Research on Marine Carbon Cycles in China (1998–2002). Adv. Mar. Sci. 20(3): 110–116. (in Chinese)

    Google Scholar 

  • Tan, Y., L. J. Zhang, F. Wang et al., 2004. Summer surface water pCO2 and CO2 flux at air-sea interface in Western part of the East China Sea. Chinese Oceanologia & Limnologia Sinica 35(3): 239–245. (in Chinese)

    Google Scholar 

  • Tans, P. P., I. Y. Fung and T. Takahashi, 1990. Observational constraints on the global atmospheric CO2 budget. Science 247: 1 431–1 438.

    Article  Google Scholar 

  • Wang, B. D., 1999. Vertical profiles and transportation of nutrients in the Southern Yellow Sea. Mar. Environ. Sci. 18(1): 13–18. (in Chinese)

    Google Scholar 

  • Wang, F., L. J. Zhang and J. Zhang, 2002. A preliminary study of pCO2 in the surface water of the southern Yellow Sea in summer. J. Ocean Univ. Qingdao 32(6): 1 007–1 011. (in Chinese)

    Google Scholar 

  • Wang, S. L., C. T. A. Chen, G. H. Hong et al., 2000. Carbon dioxide and related parameters in the East China Sea. Continental Shelf Research 20: 525–544.

    Article  Google Scholar 

  • Wanninkhof, R. H., 1992. Relationship between gas exchange and wind speed over the ocean. J. Geophys. Res. 97(C5): 7373–7381.

    Article  Google Scholar 

  • Xu, D. Y., X. Q. Liu, X. H. Zhang et al., 1997. China Offshore Geology. Geological Press, Beijing, China. 310p. (in Chinese)

    Google Scholar 

  • Yool, A. and M. J. R. Fasham, 2001. An examination of the “continental shelf pump” in an open ocean general circulation model. Global Biogeochemical Cycles 15: 831–844.

    Article  Google Scholar 

  • Zhang, L. J., B. Y. Wang and J. Zhang, 1999. pCO2 in the surface water of the East China Sea in winter and summer. J. Ocean Univ. Qingdao 29: 149–153. (in Chinese)

    Google Scholar 

  • Zhang, Y. H., Z. Q., Huang, W. Q. Wang et al., 2000. A study of carbon dioxide in Taiwan Strait. J. Oceanogr. in Taiwan Strait 19(2): 163–169. (in Chinese)

    Google Scholar 

  • Zhang, Z. B. (ed in chief), 1996. Studies of Chemical Processes of the Nansha Islands Waters. Science Press, Beijing, China, 71p. (in Chinese)

    Google Scholar 

  • Zhang, Z. B., W. J. Cai, L. S. Liu et al., 2003. Direct determination of thickness of sea surface microlayer using a pH microelectrode at original location. Science in China (B) 46(4): 339–351.

    Article  Google Scholar 

  • Zhang, Z. B., H. D. Gong, L. S. Liu et al., 2006. The SML pump of carbon cycles in oceans. Science in China (B) 49(2): 126–132.

    Google Scholar 

  • Zhang, Z. B., L. S., Liu, C. T. Chen et al., 1999. Principles and Applications of the Marine Chemistry. Ocean Press, Beijing, China, 519p. (in Chinese)

    Google Scholar 

  • Zhang, Z. B., L. S. Liu, C. Y. Liu et al., 2003. Studies on the sea surface microlayer. II. The layer of sudden change of physical and chemical properties. J. Colloid & Interf. Sci. 264: 148–159.

    Article  Google Scholar 

  • Zhang, Z. B., L. S. Liu, Z. J. Wu et al., 1998. Physicochemical studies of the sea surface microlayer. I. Thickness of the sea surface microlayer and its experiment determination. J. Colloid and Interf. Sci. 204(2): 294–299.

    Article  Google Scholar 

  • Zhang, Z. B., G. P. Yang and L. S. Liu. 1997. A new suggestion on the flux of matter in the air-sea interface. Chinese Science Bulletin 42(9): 943–946.

    Google Scholar 

  • Zhang, Z. B., A. H. Zhang, L. S. Liu et al., 2003. Viscosity of sea surface microlayer in Jiaozhou Bay and adjacent sea area. Chin. J. Oceanol. Limnol. 21(4): 351–357.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Zhengbin  (张正斌).

Additional information

Supported by the Major Project of the NSFC (No.40490263); the NSFC (No.40076020, 40376022); the National Basic Research Program of China (973 Program) (No.2001CB409700); the Doctoral Program for Higher Education (No.20030423007). This paper was reported in the international conference “the First Workshop on Asian Dust and Ocean Ecosystem” in Weihai, China, 12–15th, Oct., 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, H., Zhang, Z., Zhang, C. et al. Multilayer distribution of carbon dioxide system in surface water of the Yellow Sea in spring. Chin. J. Ocean. Limnol. 25, 1–15 (2007). https://doi.org/10.1007/s00343-007-0001-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-007-0001-4

Key words

Navigation