Skip to main content
Log in

A laser diagnostic for lineshape-based gas temperature and pressure measurements targeting a single atomic potassium absorption transition

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A single-line laser absorption diagnostic technique has been developed for rapid measurements of temperature and pressure in high-enthalpy gas environments. This technique targets atomic potassium via the absorption lineshape of the D2 transition near 766.7 nm. Potassium is a convenient spectroscopic target because it has strong resonance transitions, is naturally occurring in many experimental facilities, and is active in the near-infrared where robust and cost-effective optical equipment is easily available. The approach was tested and validated at a measurement rate of 50 kHz in a shock tube at conditions ranging from 800–3600 K and 0.04–1 atm. Collisional broadening coefficients for potassium vapor in argon and in nitrogen were extended to this temperature range. The approach is most sensitive to pressure at low temperatures and high pressures, where the lineshape is most Lorentzian in form; conversely, it is most sensitive to temperature at high temperatures and low pressures where the lineshape is most Gaussian in form. At intermediate temperatures and pressures, it is sensitive to both quantities. Measurement uncertainties were as low as 6% in temperature and pressure. The technique can also be extended to other species for developing similar single-line diagnostics sensitive to different regions in temperature and pressure space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data available from corresponding author upon reasonable request.

References

  1. Y.M. Abul-Huda, M. Gamba, Flow characterization of a hypersonic expansion tube facility for supersonic combustion studies. J. Propul. Power 33(6), 1504–1519 (2017). https://doi.org/10.2514/1.B36543

    Article  Google Scholar 

  2. A. Dufrene, M. Sharma, J.M. Austin, Design and characterization of a hypervelocity expansion tube facility. J. Propul. Power 23(6), 1185–1193 (2007). https://doi.org/10.2514/1.30349

    Article  Google Scholar 

  3. S. Stennett, D. Gildfind, A. Andrianatos, R. Morgan, P. Jacobs, C. James, P. Toniato, W. Chan, T. Silvester, Large-scale free-piston-driven multi-mode shock expansion tunnel. Exp. Fluids 65(2), 16 (2024). https://doi.org/10.1007/s00348-023-03756-y

    Article  Google Scholar 

  4. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Infrared laser-absorption sensing for combustion gases. Prog. Energy Combust. Sci. 60, 132–176 (2017). https://doi.org/10.1016/j.pecs.2016.12.002

    Article  Google Scholar 

  5. R.B. Miles, Optical diagnostics for high-speed flows. Prog. Aerosp. Sci. 72, 30–36 (2015). https://doi.org/10.1016/J.PAEROSCI.2014.09.007

    Article  Google Scholar 

  6. C.L. Strand, R.K. Hanson, Thermometry and velocimetry in supersonic flows via scanned wavelength-modulation absorption spectroscopy. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2011 (2011) https://doi.org/10.2514/6.2011-5600

  7. C.C. Jelloian, F.A. Bendana, C. Wei, R.M. Spearrin, M.E. Macdonald, Nonequilibrium vibrational, rotational, and translational thermometry via megahertz laser absorption of CO. J. Thermophys. Heat Transfer 36(2), 266–275 (2022). https://doi.org/10.2514/1.T6376/ASSET/IMAGES/LARGE/FIGURE12.JPEG

    Article  Google Scholar 

  8. M.P. Arroyo, S. Langlois, R.K. Hanson, Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor. Appl. Opt. 33(15), 3296 (1994). https://doi.org/10.1364/AO.33.003296

    Article  ADS  Google Scholar 

  9. M. DiRosa, A. Chang, D. Davidson, R. Hanson, CW laser strategies for multi-parameter measurements of high-speed flows containing either NO or O2. In: 29th Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, Reston, Virigina (1991). https://doi.org/10.2514/6.1991-359 . https://arc.aiaa.org/doi/10.2514/6.1991-359

  10. P.M. Finch, J.J. Girard, T. Schwartz, C.L. Strand, R.K. Hanson, W.M. Yu, J.M. Austin, H.G. Hornung, Measurements of T5 shock tunnel freestream temperature, velocity, and composition. AIAA J. 61(4), 1555–1578 (2023). https://doi.org/10.2514/1.J062383

    Article  ADS  Google Scholar 

  11. R.M. Spearrin, I.A. Schultz, J.B. Jeffries, R.K. Hanson, Laser absorption of nitric oxide for thermometry in high-enthalpy air. Meas. Sci. Technol. 25(12), 125103 (2014). https://doi.org/10.1088/0957-0233/25/12/125103

    Article  ADS  Google Scholar 

  12. S. Williams, D. Barone, T. Barhorst, K. Jackson, K.-C. Lin, P. Masterson, Q. Zhao, A. Sappey, Diode Laser Diagnostics of High Speed Flows. In: 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. American Institute of Aeronautics and Astronautics, Canberra, Australia (2006). https://doi.org/10.2514/6.2006-7999 . https://arc.aiaa.org/doi/10.2514/6.2006-7999

  13. M.A. Bolshov, Y.A. Kuritsyn, Y.V. Romanovskii, Tunable diode laser spectroscopy as a technique for combustion diagnostics. Spectrochim. Acta Part B Atom. Spectrosc. 106, 45–66 (2015). https://doi.org/10.1016/J.SAB.2015.01.010

    Article  ADS  Google Scholar 

  14. R.J. Lovett, The influence of temperature on absorbance in graphite furnace atomic absorption spectrometry. I: General considerations. Appl. Spectrosc. 39(5), 778–786 (1985)

    Article  ADS  Google Scholar 

  15. M. Nations, L.S. Chang, J.B. Jeffries, R.K. Hanson, A. Nawaz, J.S. Taunk, D.M. Driver, G. Raiche, Monitoring temperature in high enthalpy arc-heated plasma flows using tunable diode laser absorption spectroscopy. 44th AIAA Plasmadynamics and Lasers Conference, 1–20 (2013) https://doi.org/10.2514/6.2013-2761

  16. J. Li, S. Yang, Z. Du, H. Gao, Y. Wei, Resolving multiple combustion parameters from a single transition using degraded deconvolution of Voigt lineshape. Infrared Phys. Technol. 92, 6–12 (2018). https://doi.org/10.1016/J.INFRARED.2018.04.014

    Article  ADS  Google Scholar 

  17. T. Schwartz, P.M. Finch, C.L. Strand, R.K. Hanson, Y. Luo, W.M. Yu, J.M. Austin, H.G. Hornung, Laser absorption sensor targeting potassium for hypersonic velocity, temperature, and enthalpy measurements. AIAA J. 61(8), 1–11 (2023). https://doi.org/10.2514/1.j062620

    Article  Google Scholar 

  18. Z. Qu, E. Steinvall, R. Ghorbani, F.M. Schmidt, Tunable diode laser atomic absorption spectroscopy for detection of potassium under optically thick conditions. Anal. Chem. 88(7), 3754–3760 (2016). https://doi.org/10.1021/ACS.ANALCHEM.5B04610/ASSET/IMAGES/LARGE/AC-2015-04610W_0008.JPEG

    Article  Google Scholar 

  19. S.D. Wehe, D.S. Baer, R.K. Hanson, K.M. Chadwick, Measurements of gas temperature and velocity in hypervelocity flows using diode-laser sensors. 20th AIAA Advanced Measurement and Ground Testing Technology Conference (1998) https://doi.org/10.2514/6.1998-2699

  20. K. Zhu, S.J. Barkley, T.R. Sippel, J.B. Michael, Emission thermometry of microwave-assisted alkali-doped propellant combustion. Combus. Flame 251, 112704 (2023). https://doi.org/10.1016/J.COMBUSTFLAME.2023.112704

    Article  Google Scholar 

  21. C.W. Brasier, J.A. Drakes, K.A. Anspach, R.G. Porter, M.A. Simmons, D.W. Pruittf, Laser-induced fluorescence measurements of OMS and LR91 amine rocket exhausts. In: 28th Plasmadynamics and Lasers Conference (1997) https://doi.org/10.2514/6.1997-2378

  22. J.E. Dec, J.O. Keller, High speed thermometry using two-line atomic fluorescence. Symposium (International) on Combustion 21(1), 1737–1745 (1988) https://doi.org/10.1016/S0082-0784(88)80407-7

  23. S.T. Sanders, D.W. Mattison, L. Ma, J.B. Jeffries, R.K. Hanson, Wavelength-agile diode-laser sensing strategies for monitoring gas properties in optically harsh flows: application in cesium-seeded pulse detonation engine. Opt. Express 10(12), 505 (2002). https://doi.org/10.1364/OE.10.000505

    Article  ADS  Google Scholar 

  24. R.B. Miles, E. Udd, M. Zimmermann, Quantitative flow visualization in sodium vapor seeded hypersonic helium. Appl. Phys. Lett. 32(5), 317–319 (1978). https://doi.org/10.1063/1.90034

    Article  ADS  Google Scholar 

  25. S. Cheng, M. Zimmermann, R.B. Miles, Supersonic-nitrogen flow-field measurements with the resonant Doppler velocimeter. Appl. Phys. Lett. 43(2), 143–145 (1983). https://doi.org/10.1063/1.94284

    Article  ADS  Google Scholar 

  26. Y. Liu, X. Duan, X. Cao, D. Che, K. Liu, Experimental study on adsorption of potassium vapor in flue gas by coal ash. Powder Technol. 318, 170–176 (2017). https://doi.org/10.1016/j.powtec.2017.05.024

    Article  Google Scholar 

  27. E. Schlosser, T. Fernholz, H. Teichert, V. Ebert, In situ detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 58(11), 2347–2359 (2002). https://doi.org/10.1016/S1386-1425(02)00049-5

    Article  ADS  Google Scholar 

  28. A. Sepman, Y. Ögren, Z. Qu, H. Wiinikka, F.M. Schmidt, Tunable diode laser absorption spectroscopy diagnostics of potassium, carbon monoxide, and soot in oxygen-enriched biomass combustion close to stoichiometry. Energy Fuels (2019). https://doi.org/10.1021/ACS.ENERGYFUELS.9B02257/ASSET/IMAGES/LARGE/EF9B02257_0008.JPEG

    Article  Google Scholar 

  29. E. Thorin, F.M. Schmidt, TDLAS-based photofragmentation spectroscopy for detection of K and KOH in flames under optically thick conditions. Opt. Lett. 45(18), 5230–5233 (2020). https://doi.org/10.1364/OL.400614

    Article  ADS  Google Scholar 

  30. R.K. Hanson, R.M. Spearrin, C.S. Goldenstein Spectroscopy and Optical Diagnostics for Gases. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-23252-2

  31. A.E. Siegman, Lasers, 1st edn., pp. 89–97. University Science Books, Mill Valley (1986)

  32. M.A inne, Spectroscopic measurement an introduction to the fundamentals, 1st edn (Academic Press, Amsterdam, 2002), p.414

  33. C.J. Foot, Atomic Physics vol. 1, 1st edn. Oxford University Press, New York (2005). https://doi.org/10.1038/466035a

  34. W. Demtröder, Laser Spectroscopy: Volume 2, Technology, 4th edn. Springer, Leipzig (2008)

  35. R.H. Dicke, The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89(2), 472–473 (1953)

    Article  ADS  Google Scholar 

  36. T.G. Tiecke, Properties of potassium. Technical report (2019)

  37. G.A. Pitz, A.J. Sandoval, T.B. Tafoya, W.L. Klennert, D.A. Hostutler, Pressure broadening and shift of the rubidium D1 transition and potassium D2 transitions by various gases with comparison to other alkali rates. J. Quant. Spectrosc. Radiat. Transfer 140, 18–29 (2014). https://doi.org/10.1016/J.JQSRT.2014.01.024

    Article  ADS  Google Scholar 

  38. A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team NIST Atomic Spectra Database (ver. 5.11), [Online]. Available: https://physics.nist.gov/asd [2016, January 31]. National Institute of Standards and Technology, Gaithersburg, MD (2023)

  39. R.K. Hanson, D.F. Davidson, Recent advances in laser absorption and shock tube methods for studies of combustion chemistry. Progr. Energy Combus. Sci. 44, 103–114 (2014). https://doi.org/10.1016/j.pecs.2014.05.001

    Article  Google Scholar 

  40. D.F. Davidson, RGFROSH: a real gas frozen shock equation solver. Technical report, Department of Mechanical Engineering, Stanford University, Stanford, CA (1995)

  41. J.A. Vandervort, S.C. Barnes, C.L. Strand, R.K. Hanson, Development of a vapor-based method for seeding alkali metals in shock tube facilities. Shock Waves (2024). https://doi.org/10.1007/S00193-024-01165-6

    Article  Google Scholar 

  42. A.B. McLean, C.E.J. Mitchell, D.M. Swanston, Implementation of an efficient analytical approximation to the Voigt function for photoemission lineshape analysis. J. Electron Spectrosc. Relat. Phenom. 69(2), 125–132 (1994). https://doi.org/10.1016/0368-2048(94)02189-7

    Article  Google Scholar 

  43. Y. Ding, J.A. Vandervort, C.L. Strand, R.K. Hanson, Shock tube measurements of high-temperature argon broadening and shift parameters for the potassium D1 and D2 resonance transitions. J. Quant. Spectrosc. Radiat. Transfer 275, 107895 (2021). https://doi.org/10.1016/j.jqsrt.2021.107895

    Article  Google Scholar 

  44. Y. Ding, J.A. Vandervort, R.S. Freedman, C.L. Strand, M.S. Marley, R.K. Hanson, Collisional broadening and pressure shift of the potassium resonance doublets by nitrogen, helium, and hydrogen at high temperatures. J. Quant. Spectrosc. Radiat. Transfer (2022). https://doi.org/10.1016/j.jqsrt.2022.108149

    Article  Google Scholar 

  45. J.W. Streicher, A. Krish, R.K. Hanson, Vibrational relaxation time measurements in shock-heated oxygen and air from 2000 K to 9000 K using ultraviolet laser absorption. Phys. Fluids 32(8), 86101 (2020). https://doi.org/10.1063/5.0015890/1061037

    Article  Google Scholar 

  46. R.C. Millikan, D.R. White, Systematics of vibrational relaxation. J. Chem. Phys. 39(12), 3209–3213 (1963). https://doi.org/10.1063/1.1734182

    Article  ADS  Google Scholar 

  47. S. Roy, S. O’Byrne, Doppler-free saturated absorption velocimetry for low-density hypersonic flow diagnostics. AIP Conf. Proc. 2996(1), 140004 (2024). https://doi.org/10.1063/5.0187402/3262697

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Office of Naval Research (ONR) under Award No. N00014-20-1-2322 with Eric Marineau as technical monitor. The authors would like to thank Sean Clees and Jesse Streicher for helpful technical conversations. J. Vandervort acknowledges financial support from the U.S. Department of Defense through a NDSEG fellowship. T. Schwartz acknowledges financial support from the NASA Space Technology Graduate Research Opportunities (NSTGRO) Fellowship. S. Barnes acknowledges financial support from the National Science Foundation (NSF) Graduate Research Fellowship under Grant No. DGE-2146755.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua A. Vandervort.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1818 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandervort, J.A., Schwartz, T., Barnes, S.C. et al. A laser diagnostic for lineshape-based gas temperature and pressure measurements targeting a single atomic potassium absorption transition. Appl. Phys. B 130, 117 (2024). https://doi.org/10.1007/s00340-024-08252-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08252-7

Navigation