Skip to main content
Log in

Synchronous detection of CO2 and CH4 gas absorption spectroscopy based on TDM and optimized adaptive Whittaker-Henderson filtering algorithm

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A cavity ring-down spectroscopy (CRDS) system based on the time-division multiplexing (TDM) and an improved Whittaker-Henderson (W-H) filtering algorithm was proposed to synchronous detect of methane (CH4) and carbon dioxide (CO2) gas absorption spectroscopy. The mechanical optical switch was used to quickly switch distributed feedback (DFB) lasers with different wavelengths in the optical path.And the adaptive W-H filtering algorithm combined with convolutional neural network (CNN) could quickly and accurately obtain the best weight parameters to achieve effective denoising of absorption spectrum.In addition, the gradient concentration of CH4 and CO2weredetected and the limit of detection (LOD) of CRDS system was studied.The results of experiment demonstrated that the system could detect CO2 and CH4 in real time and had good stability. Allan deviation analysis shows that the LOD of CH4 and CO2 are 8 ppb and 0.85 ppm under the average number of 1. The LOD of CH4 and CO2 can be optimized to 2 ppb and 0.16 ppm under the optimal average number. In short, the proposed system had high sensitivity, good stability and could measure various gases synchronously, which had important application potential in the field of gas monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. D.S. Kaufman, E. Broadman, Nature. 614, 425 (2023)

    Article  ADS  Google Scholar 

  2. L. Al-Ghussain, Environ. Prog. Sustain. Energy. 38, 1 (2018)

    Google Scholar 

  3. L. Xu, K. Liu, J. Liang, N. Liu, S. Zhou, Anal. Chem. 95, 6955 (2023)

    Article  Google Scholar 

  4. S. Zhou, L. Xu, K. Chen, L. Zhang, B. Yu, T. Jiang, J. Li, Sens. Actuators B 326, 128951 (2021)

    Article  Google Scholar 

  5. J. Xia, F. Zhu, J. Bounds, E. Aluauee, A. Kolomenskii, Q. Dong, J. He, C. Meadows, S. Zhang, H.A. Schuessler, J. Appl. Phys. 131, 220901 (2022)

    Article  ADS  Google Scholar 

  6. K.S. Gadedjisso-Tossou, L.I. Stoychev, M.A. Mohou, H. Cabrera, J. Niemela, M.B. Danailov, A. Vacchi, Photonics. 7, 74 (2020)

    Article  Google Scholar 

  7. S. Wahl, H.C. Steen-Larsen, J. Reuder, M. Hörhold, J. Geophys. Research: Atmos. 126, (2021)

  8. Z. Mo, J. Yu, J. Wang, J. He, Y. Liu, J. Lightwave Technol. 39, 4020 (2021)

    Article  ADS  Google Scholar 

  9. H. Wu, J. Chen, A. Liu, S.-M. Hu, J. Zhang, Chin. J. Chem. Phys. 33, 1 (2020)

    Article  ADS  Google Scholar 

  10. C. Yver Kwok, O. Laurent, A. Guemri, C. Philippon, B. Wastine, C.W. Rella, C. Vuillemin, F. Truong, M. Delmotte, V. Kazan, M. Darding, B. Lebègue, C. Kaiser, I. Xueref-Rémy, M. Ramonet, Atmos. Meas. Tech. 8, 3867 (2015)

    Article  Google Scholar 

  11. D.V. Petrov, I.I. Matrosov, M.A. Kostenko, Opt. Laser Technol. 152, 108155 (2022)

    Article  Google Scholar 

  12. C. Wang, N. Srivastava, B.A. Jones, R.B. Reese, Appl. Phys. B 92, 259 (2008)

    Article  ADS  Google Scholar 

  13. H. Chen, J. Winderlich, C. Gerbig, A. Hoefer, C.W. Rella, E.R. Crosson, A.D. Van Pelt, J. Steinbach, O. Kolle, V. Beck, B.C. Daube, E.W. Gottlieb, V.Y. Chow, G.W. Santoni, S.C. Wofsy, Atmos. Meas. Tech. 3, 375 (2010)

    Article  Google Scholar 

  14. Q. Wei, B. Li, J. Wang, B. Zhao, P. Yang, Atmosphere. 12, 221 (2021)

    Article  ADS  Google Scholar 

  15. M. Dong, C. Zheng, S. Miao, Y. Zhang, Q. Du, Y. Wang, F. Tittel, Sensors. 17, 2221 (2017)

    Article  ADS  Google Scholar 

  16. Y. Chen, K.K. Lehmann, J. Kessler, B.S. Lollar, G.L. Couloume, T.C. Onstott, Anal. Chem. 85, 11250 (2013)

    Article  Google Scholar 

  17. H. Wu, L. Dong, X. Yin, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, Sens. Actuators B 297, 126753 (2019)

    Article  Google Scholar 

  18. B. Lins, P. Zinn, R. Engelbrecht, B. Schmauss, Appl. Phys. B 100, 367 (2010)

    Article  ADS  Google Scholar 

  19. J. Li, U. Parchatka, H. Fischer, Appl. Phys. B 108, 951 (2012)

    Article  ADS  Google Scholar 

  20. S. Zhou, C. Shen, L. Zhang, N.-W. Liu, T. He, B. Yu, J. Li, Opt. Express. 27, 31874 (2019)

    Article  ADS  Google Scholar 

  21. S. Zhou, J. Li, C. Shen, L. Zhang, T. He, B. Yu, X. Li, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 223, 117332 (2019)

    Article  Google Scholar 

  22. G. Zhang, H. Hao, Y. Wang, Y. Jiang, J. Shi, J. Yu, X. Cui, J. Li, S. Zhou, B. Yu, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 263, 120187 (2021)

    Article  Google Scholar 

  23. B. Zimmermann, A. Kohler, Appl. Spectrosc. 67, 892 (2013)

    Article  ADS  Google Scholar 

  24. P.H.C. Eilers, Anal. Chem. 75, 3631 (2003)

    Article  Google Scholar 

  25. M. Schmid, D. Rath, U. Diebold, ACS Meas. Sci. Au. 2, 185 (2022)

    Article  Google Scholar 

  26. I.E. Gordon, L.S. Rothman, R.J. Hargreaves, R. Hashemi, E.V. Karlovets, F.M. Skinner, E.K. Conway, C. Hill, R.V. Kochanov, Y. Tan, P. Wcisło, A.A. Finenko, K. Nelson, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, A. Coustenis, B.J. Drouin, J. Quant. Spectrosc. Radiative Transf. 277, 107949 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China (61905001), and University Natural Science Research Project of Anhui Province (2023AH050066, 2023AH050088).

Author information

Authors and Affiliations

Authors

Contributions

L.X Writing the origin manuscript, experiment analysis; R.T Investigation; W.K Equipment provided; X.S Software; B.Y Project administration; G.Z Review, editing; S.Z Methodology, review and editing; All authors reviewed the manuscript.

Corresponding authors

Correspondence to Guosheng Zhang or Sheng Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Tang, R., Kang, W. et al. Synchronous detection of CO2 and CH4 gas absorption spectroscopy based on TDM and optimized adaptive Whittaker-Henderson filtering algorithm. Appl. Phys. B 130, 102 (2024). https://doi.org/10.1007/s00340-024-08241-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08241-w

Navigation