Skip to main content
Log in

Improvement of rotation rate sensitivity in a double moving mirrors cavity of a quantum optomechanical gyroscope

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this article, we have presented a design of a quantum optomechanical gyroscope, consisting of a Michelson interferometer on a rotating table. An optical cavity with two moving mirrors is placed on one of the interferometer arms. Mirrors have freedom of movement in the x direction. Also, a sinusoidal movement in the y direction is applied to the entire optical cavity. The Coriolis force acting on the mirrors leads to a change in the optical path length of the cavity and then causes a change in the resonance frequency of it. This leads to an additional phase of radiation inside the cavity. We use the Heisenberg–Langevin equations of motion, to calculate the signal and noise of the output radiation of the interferometer, and then calculate the minimum rotation rate and its sensitivity that can be obtained from our gyroscope. It is shown that by using two moving mirrors, the sensitivity has been improved by more than \(\varvec{56\%}\) compared with the cavity with one moving mirror. On the other hand, at temperatures of \({\varvec{T=0\,K}}\), \({\varvec{T=1\,mK}}\) and \({\varvec{T=300\,K}}\), and by drawing the Allan deviation curve, Angular Random Walk noise and Bias Stability of the gyroscope were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Micro-Electro-Mechanical Systems (MEMS).

  2. \(\hat{H}_{new}=\hat{U} \hat{H} \hat{U}^\dagger -i\hbar \hat{U}\frac{\partial \hat{U}^\dagger }{\partial t}, \hat{U}=e^{i\omega _d \hat{c}^\dagger \hat{c} t}.\)

  3. Weighted least squares (WLS).

  4. Angular Random Walk(ARW).

  5. Bias Stability (BS).

References

  1. M.N. Passaro Vittorio et al., Gyroscope technology and applications: a review in the industrial perspective. Sensors 17, 2284 (2017)

  2. Z. Guo, F. Cheng, B. Li, L. Cao, C. Lu, K. Song, Research Development of Silicon Mems Gyroscopes (Springer, Berlin, 2015)

    Google Scholar 

  3. S. Ezekiel, H.J. Arditty, Fiber-optic rotation sensors. Tutorial review, in Fiber-Optic Rotation Sensors and Related Technologies. ed. by S. Ezekiel, H.J. Arditty (Springer, Berlin, 1982), pp.2–26

    Chapter  Google Scholar 

  4. H. Lefevre, The Fiber Optic Gyroscope (Artech House, London, 2014)

    Google Scholar 

  5. W.M. Macek, D.T. Davis, Rotation rate sensing with travelling wave ring lasers. Appl. Phys. Lett. 2, 67–68 (1963)

    Article  ADS  Google Scholar 

  6. M. Guessoum, R. Gautier, Q. Bouton, L. Sidorenkov, A. Landragin, R. Geiger, High stability two axis cold-atom gyroscope, in 2022 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Avignon, France (2022)

  7. Y. Zhao, X. Yue, F. Chen, C. Huang, Extension of the rotation-rate measurement range with no sensitivity loss in a cold-atom gyroscope. Phys. Rev. A 104, 013312 (2021)

    Article  ADS  Google Scholar 

  8. C. L. Garrido Alzar, Compact chip-scale guided cold atom gyrometers for inertial navigation: enabling technologies and design study. AVS Quantum Sci. 1, 014702 (2019)

    Article  ADS  Google Scholar 

  9. D. Xia, C. Yu, L. Kong, The development of micromachined gyroscope structure and circuitry technology. Sensors 14, 1394–1473 (2014)

    Article  ADS  Google Scholar 

  10. I. Wilson-Rae, N. Nooshi, W. Zwerger, T.J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)

    Article  ADS  Google Scholar 

  11. B.S. Sheard, M.B. Gray, C.M. Mow-Lowry, D.E. McClelland, S.E. Whitcomb, Observation and characterization of an optical spring. Phys. Rev. A 69, 051801 (2004)

    Article  ADS  Google Scholar 

  12. Q. Liao, W. Bao, X. Xiao, W. Nie, Y.-C. Liu, Optomechanically induced transparency and slow-fast light effect in hybrid cavity optomechanical systems. Crystals 11(6), 698 (2021)

    Article  Google Scholar 

  13. B.-B. Li, L. Ou, Y. Lei, Y.-C. Liu, Cavity optomechanical sensing. Nanophotonics 10, 2799–2832 (2021)

    Article  Google Scholar 

  14. E.J. Post, Sagnac effect. Rev. Mod. Phys. 39, 475 (1967)

    Article  ADS  Google Scholar 

  15. S. Davuluri, Y. Li, Unidirectional gyroscope using optomechanics to avoid mode-locking. J. Opt. 21, 115402 (2019)

    Article  ADS  Google Scholar 

  16. S. Davuluri, Y. Li, Absolute rotation detection by Coriolis force measurement using optomechanics. New J. Phys. 18(10), 103047 (2016)

    Article  ADS  Google Scholar 

  17. S. Davuluri, K. Li, Y. Li, Gyroscope with two-dimensional optomechanical mirror. N. J. Phys. 19(11), 113004 (2017)

    Article  Google Scholar 

  18. K. Li, S. Davuluri, Y. Li, Three-mode optomechanical system for angular velocity detection. Chin. Phys. B 27(8), 084203 (2018)

    Article  ADS  Google Scholar 

  19. W.P. Bowen, G.J. Milburn, Quantum Optomechanics (Taylor & Francis, London, 2016)

    Google Scholar 

  20. K.R. Symon, Mechanics (Addison-Wesley Publishing Company, California, 1971)

    Google Scholar 

  21. C.W. Gardiner, M.J. Collett, Input and output in damped quantum systems: quantum stochastic differential equations. Phys. Rev. A 31, 3761 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity Optomechanics: Nano- and Micromechanical Resonators Interacting with Light (Springer, Berlin, 2014)

    Book  Google Scholar 

  23. J. Baraillon, B. Taurel, P. Labeye, L. Duraffourg, Linear analytical approach to dispersive, external dissipative, and intrinsic dissipative couplings in optomechanical systems. Phys. Rev. A 102, 033509 (2020)

    Article  ADS  Google Scholar 

  24. M.J. Collet, C.W. Gardiner, Squeezing of intracavity and traveling-wave light fields produced in parametric amplification. Phys. Rev. A 30, 1386 (1984)

    Article  ADS  Google Scholar 

  25. D.-G. Welsch, W. Vogel, T. Opatrný, II Homodyne Detection and Quantum-State Reconstruction (Elsevier, Amsterdam, 1999), pp.63–211

    Google Scholar 

  26. C.M. Mow-Lowry, A.J. Mullavey, S. Goßler, M.B. Gray, D.E. McClelland, Cooling of a gram-scale cantilever flexure to 70 mK with a servo-modified optical spring. Phys. Rev. Lett. 100, 010801 (2008)

    Article  ADS  Google Scholar 

  27. P. Lv, J. Liu, J. Lai, K. Huang, Allan variance method for gyro noise analysis using weighted least square algorithm. Optik 126(20), 2529–2534 (2015)

    Article  ADS  Google Scholar 

  28. N. El-Sheimy, H. Hou, X. Niu, Analysis and modeling of inertial sensors using Allan variance. IEEE Trans. Instrum. Meas. 57(1), 140–149 (2008)

    Article  ADS  Google Scholar 

  29. J.J. Ford, E.M. Evans, Online estimation of Allan variance parameters. J. Guid. Control Dyn. 23(6), 980–987 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that all participate equally in the manuscript and there isn't any conflict between them.

Corresponding author

Correspondence to Hossein Saghafifar.

Ethics declarations

Conflict of interest

No funding was provided for this manuscript by any person or organization. There are no Conflict of interest with any person or organization in this manuscript. The authors declare that all participate equally in the manuscript and there isn’t any conflict between them.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, V., Saghafifar, H. & Davoudi-Darareh, M. Improvement of rotation rate sensitivity in a double moving mirrors cavity of a quantum optomechanical gyroscope. Appl. Phys. B 130, 99 (2024). https://doi.org/10.1007/s00340-024-08227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08227-8

Navigation