Skip to main content
Log in

High power and excellent beam quality rod Yb: YAG regenerative amplifier

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper demonstrates a laser diode double-ended pumped Yb: YAG rod regenerative amplifier (RA) with an average power of 37 W, which substantially exceeds the performance of previously reported bulk Yb: YAG medium RAs. Compared to other bulk Yb: YAG medium RAs, we have introduced several enhancements in thermal management, such as employing a double-ended pump to reduce the temperature gradient inside the crystal, and the cooling efficiency is significantly enhanced by designed heat sink. As a result, the thermal effect is effectively suppressed. The system attains high average output power and power stability (RMS = 0.56%) at a pulse repetition rate of 400 kHz. In addition, the output beam maintains excellent quality even under varying high pump powers, demonstrating an \(M^2\) consistently below 1.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. P. Ye, L.G. Oldal, T. Csizmadia, Z. Filus, T. Grósz, P. Jójáirt, I. Seres, Z. Bengery, B. Gilicze, S. Kahaly, High-flux 100 khz attosecond pulse source driven by a high-average power annular laser beam. Ultrafast Sci. (2022)

  2. F. Emaury, A. Diebold, C.J. Saraceno, U. Keller, Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator. Optica 2(11), 980–984 (2015)

    Article  ADS  Google Scholar 

  3. J. Miao, T. Ishikawa, I.K. Robinson, M.M. Murnane, Beyond crystallography: Diffractive imaging using coherent x-ray light sources. Science 348(6234), 530–535 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Johnson, L. Miseikis, D. Wood, D. Austin, C. Brahms, S. Jarosch, C. Strüber, P. Ye, J. Marangos, Measurement of sulfur l2, 3 and carbon k edge xanes in a polythiophene film using a high harmonic supercontinuum. Struct. Dyn. 3(6) (2016)

  5. H. Iwasawa, High-resolution angle-resolved photoemission spectroscopy and microscopy. Electron. Struct. 2(4), 043001 (2020)

    Article  ADS  Google Scholar 

  6. T.-H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Microstructuring of silicon with femtosecond laser pulses. Appl. Phys. Lett. 73(12), 1673–1675 (1998)

    Article  ADS  Google Scholar 

  7. K.C. Phillips, H.H. Gandhi, E. Mazur, S. Sundaram, Ultrafast laser processing of materials: a review. Adv. Opt. Photon. 7(4), 684–712 (2015)

    Article  Google Scholar 

  8. W. Clarkson, Thermal effects and their mitigation in end-pumped solid-state lasers. J. Phys. D Appl. Phys. 34(16), 2381 (2001)

    Article  ADS  Google Scholar 

  9. M. Divoky, J. Pilar, M. Hanus, P. Navratil, M. Sawicka-Chyla, M. De Vido, P. Phillips, K. Ertel, T. Butcher, M. Fibrich, Performance comparison of yb: Yag ceramics and crystal gain material in a large-area, high-energy, high average-power diode-pumped laser. Opt. Express 28(3), 3636–3646 (2020)

    Article  ADS  Google Scholar 

  10. I.B. Mukhin, O.V. Palashov, E.A. Khazanov, A.G. Vyatkin, E.A. Perevezentsev, Laser and thermal characteristics of yb: Yag crystals in the 80–300 k temperature range. Quantum Electron. 41(11), 1045 (2011)

    Article  ADS  Google Scholar 

  11. J. Speiser, Thin disk lasers: history and prospects. In: Laser Sources and Applications III, vol. 9893, pp. 87–97. SPIE

  12. H. Fattahi, A. Alismail, H. Wang, J. Brons, O. Pronin, T. Buberl, L. Váimos, G. Arisholm, A.M. Azzeer, F. Krausz, High-power, 1-ps, all-yb:yag thin-disk regenerative amplifier. Opt. Lett. 41(6), 1126–1129 (2016) https://doi.org/10.1364/OL.41.001126

  13. P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, Innoslab amplifiers. IEEE J. Select. Top. Quantum Electron. 21(1), 447–463 (2014)

  14. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. Hoffmann, Poprawe: 400 w yb: Yag innoslab fs-amplifier. Opt. Express 17(15), 12230–12245 (2009)

    Article  ADS  Google Scholar 

  15. B.E. Schmidt, A. Hage, T. Mans, F. Légaré, H.J. Wörner, Highly stable, 54mj yb-innoslab laser platform at 0.5 kw average power. Opt. Express 25(15), 17549–17555 (2017)

  16. Z.G. Zhao, Z.H. Cong, Z.J. Liu, Review on ultrashort pulse laser amplifiers based on bulk yb-doped gain media. Laser Optoelectron. Progr. 57(7), 14 (2020). https://doi.org/10.3788/lop57.071605. ISI Document Delivery No.: ML4VD Times Cited: 1 Cited Reference Count: 64 Zhao Zhigang Cong Zhenhua Liu Zhaojun liu, zhao/GXV-6141-2022 LIU, Zhaojun/0000-0003-3502-9666 1 6 49 Shanghai inst optics & fine mechanics, chinese acad science Shanghai

  17. J.F. Wang, Y.E. Jiang, X.C. Li, X. Li, Research of diode-pumped cryogenic yb:yag amplification at 10hz repetition rate. In: Conference on High Power Lasers for Fusion Research. Proceedings of SPIE, vol. 7916. Spie-Int Soc Optical Engineering, BELLINGHAM (2011). https://doi.org/10.1117/12.877652 . ISI Document Delivery No.: BYA96 Times Cited: 0 Cited Reference Count: 7 Wang, Jiangfeng Jiang, Youen Li, Xuechun Li, Xiang wang, jiaqi/JSL-7112-2023 0277-786x 79160m. \(<\)Go to ISI\(>\)://WOS:000297798700014

  18. X.H. Lu, J.F. Wang, X. Li, Y.E. Jiang, W. Fan, X.C. Li, Theoretical and experimental research on cryogenic yb:yag regenerative amplifier. Chin. Opt. Lett. 9(11), 4 (2011). https://doi.org/10.3788/col201109.111401. ISI Document Delivery No.: 846JR Times Cited: 4 Cited Reference Count: 15 Lu, Xinghua Wang, Jiangfeng Li, Xiang Jiang, Youen Fan, Wei Li, Xuechun wang, jiaqi/JSL-7112-2023 6 1 14 Chinese laser press Shanghai Si

  19. X.H. Lu, J.F. Wang, Y.E. Jiang, W. Fan, X.C. Li, Transient thermal effects in end-pumped cryogenic yb:yag regenerative amplifier. J. Modern Opt. 59(4), 354–359 (2012) https://doi.org/10.1080/09500340.2011.628129 . ISI Document Delivery No.: 877BZ Times Cited: 2 Cited Reference Count: 14 Lu, Xinghua Wang, Jiangfeng Jiang, Youen Fan, Wei Li, Xuechun wang, jiaqi/JSL-7112-2023 2 0 19 Taylor & francis ltd Abingdon

  20. Y. Akahane, M. Aoyama, K. Ogawa, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, K. Yamakawa, High-energy, diode-pumped, picosecond yb:yag chirped-pulse regenerative amplifier for pumping optical parametric chirped-pulse amplification. Opt. Lett. 32(13), 1899–1901 (2007). https://doi.org/10.1364/ol.32.001899.ISI Document Delivery No.: 194MK Times Cited: 40 Cited Reference Count: 18 Akahane, Y. Aoyama, M. Ogawa, K. Tsuji, K. Tokita, S. Kawanaka, J. Nishioka, H. Yamakawa, K. Tokita, Shigeki/L-5074-2015; Kawanaka, Junji/P-8065-2015 Kawanaka, Junji/0000-0001-5655-7981; Tokita, Shigeki/0000-0002-3177-5613 46 2 26 Optical soc amer Washington

  21. J. Kawanaka, Y. Takeuchi, A. Yoshida, S.J. Pearce, R. Yasuhara, T. Kawashima, H. Kan, Highly efficient cryogenically-cooled yb:yag laser. Laser Phys. 20(5), 1079–1084 (2010). https://doi.org/10.1134/s1054660x10090252.ISI Document Delivery No.: 635LD Times Cited: 53 Cited Reference Count: 9 Kawanaka, J. Takeuchi, Y. Yoshida, A. Pearce, S. J. Yasuhara, R. Kawashima, T. Kan, H. Kawanaka, Junji/P-8065-2015 Kawanaka, Junji/0000-0001-5655-7981 53 3 23 Iop publishing ltd Bristol 1555-6611

  22. X. Délen, Y. Zaouter, I. Martial, N. Aubry, J. Didierjean, C. Hönnninger, E. Mottay, F. Balembois, P. Georges, Yb:yag single crystal fiber power amplifier for femtosecond sources. Opt. Lett. 38(2), 109–111 (2013). https://doi.org/10.1364/OL.38.000109

    Article  ADS  Google Scholar 

  23. T. Jitsuno, J. Shao, W. Rudolph, A. Maruko, M. Nishio, S. Matsubara, M. Tanaka, M. Takama, T. Yoshida, K. Kyomoto, H. Okunishi, K. Kato, K. Shimabayashi, M. Morioka, S. Inayoshi, S. Yamagata, S. Kawato, Thin-rod Yb:YAG regenerative laser amplifier (2014). https://doi.org/10.1117/12.2073664

  24. I.I. Kuznetsov, S.A. Chizhov, I.B. Mukhin, O.V. Palashov, Technology of thin-rod yb : Yag amplifiers with a high pulse energy and average power. Quantum Electron. 50(4), 327–330 (2020). https://doi.org/10.1070/qel17279

    Article  ADS  Google Scholar 

  25. K. Sueda, S. Kawato, T. Kobayashi, Ld pumped yb:yag regenerative amplifier for high average power short-pulse generation. Laser Phys. Lett. 5(4), 271 (2008). https://doi.org/10.1002/lapl.200710124

    Article  ADS  Google Scholar 

  26. S. Matsubara, M. Tanaka, M. Takama, H. Hitotsuya, T. Kobayashi, S. Kawato, A picosecond thin-rod yb:yag regenerative laser amplifier with the high average power of 20 w. Laser Phys. Lett. 10(5), 055810 (2013). https://doi.org/10.1088/1612-2011/10/5/055810

    Article  ADS  Google Scholar 

  27. Z. Peng, Y. Shi, X. Bu, C. Hong, H. Li, Y. Xu, P. Wang, 21 w, 105 \(\mu\)j regenerative amplifier based on yb: Yag scf and nalm fiber oscillator. IEEE Photon. Technol. Lett. 32(6), 333–336 (2020)

    Article  ADS  Google Scholar 

  28. A.M. Rodin, E. Zopelis, Comparison of yb:yag single crystal fiber with larger aperture cpa pumped at 940 nm and 969 nm. In: 2017 Conference on Lasers and Electro-Optics Pacific Rim, p. 1905. Optica Publishing Group. https://opg.optica.org/abstract.cfm?URI=CLEOPR-2017-s1905

  29. P. Mackonis, A.M. Rodin, Laser with 1.2 ps, 20 mj pulses at 100 hz based on cpa with a low doping level yb:yag rods for seeding and pumping of opcpa. Opt. Express 28(2), 1261–1268 (2020). https://doi.org/10.1364/OE.380907

  30. I. Matsushima, A. Tanabashi, Development of high-efficiency 10 khzmjps yb:yag laser for industry. Opt. Rev. 17(3), 294–299 (2010). https://doi.org/10.1007/s10043-010-0052-1.Times Cited: 2 Isao, Matsushima/A-2365-2013; Tanabashi, Akihiro/ Tanabashi, Akihiro/0000-0001-9367-6875 0 2

  31. W.T. Zhu, H.J. He, Q.D. Lin, X.Y. Guo, C.T. Zhou, S.C. Ruan, High energy yb:yag regenerative amplifier. Laser Optoelectron. Progr. 58(17), 5 (2021). https://doi.org/10.3788/lop202158.1736001.ISI Document Delivery No.: YV6QD Times Cited: 1 Cited Reference Count: 20 Zhu Wentao He Huijun Lin Qingdian Guo Xiaoyang Zhou Cangtao Ruan Shuangchen He, Huijun/AAY-5162-2020 He, Huijun/0000-0002-6613-5085 1 5 23 Shanghai inst optics & fine mechanics, chinese acad science Shanghai

  32. A.V. Okishev, Highly efficient room-temperature yb:yag ceramic laser and regenerative amplifier. Opt. Lett. 37(7), 1199–1201 (2012). https://doi.org/10.1364/ol.37.001199 . ISI Document Delivery No.: 925NP Times Cited: 10 Cited Reference Count: 8 Okishev, A. V. U.S. Department of Energy (DOE) Office of Inertial Confinement Fusion [DE-FC52-08NA28302]; University of Rochester; New York State Energy Research and Development Authority This work was supported by the U.S. Department of Energy (DOE) Office of Inertial Confinement Fusion under cooperative agreement no. DE-FC52-08NA28302, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. 11 1 12 Optical soc amer Washington

  33. W. Zhu, H. He, J. Yu, Q. Lin, X. Guo, C. Zhou, S. Ruan, A yb:yag dual-crystal regenerative amplifier. Opt. Commun. 499 (2021). https://doi.org/10.1016/j.optcom.2021.127268

  34. J. Romero, J. Johannsen, M. Mond, K. Petermann, G. Huber, E. Heumann, Continuous-wave laser action of yb 3+-doped lanthanum scandium borate. Appl. Phys. B 80, 159–163 (2005)

    Article  ADS  Google Scholar 

  35. M.S. El-Daher, Finite element analysis of thermal effects in diode end-pumped solid-state lasers. Adv. Opt. Technol. 2017 (2017)

  36. M. MacDonald, T. Graf, J. Balmer, H. Weber, Reducing thermal lensing in diode-pumped laser rods. Opt. Commun. 178(4–6), 383–393 (2000)

    Article  ADS  Google Scholar 

  37. C. Wang, J.B. Khurgin, H. Yu, 450 w pulsed laser system with m 2< 1.2 based on a 969-nm laser diode end-pumped yb: Yag rod amplifier. Opt. Lett. 48(21), 5751–5754 (2023)

  38. W. Clarkson, Thermal effects and their mitigation in end-pumped solid-state lasers. J. Phys. D-Appl. Phys. 34(16), 2381–2395 (2001). https://doi.org/10.1088/0022-3727/34/16/302

    Article  ADS  Google Scholar 

  39. M. Jalal Abdul Razzaq, A. K Abass, W. Yas Nassir, Thermal lensing reduction in conventional and composite nd: Yag laser rod. Eng. Technol. J. 34(11), 2031–2035 (2016)

  40. M.J. AbdulRazzaq, K.S. Shibib, S.I. Younis, Temperature distribution and stress analysis of end pumped lasers under gaussian pump profile. Opt. Quant. Electron. 52(8), 379 (2020)

    Article  Google Scholar 

  41. K.S. Shibib, M.M. Tahir, H.I. Qatta, Analytical model of transient temperature and thermal stress in continuous wave double-end-pumped laser rod: Thermal stress minimization study. Pramana 79, 287–297 (2012)

    Article  ADS  Google Scholar 

  42. P. Balla, A.B. Wahid, I. Sytcevich, C. Guo, A.-L. Viotti, L. Silletti, A. Cartella, S. Alisauskas, H. Tavakol, U. Grosse-Wortmann, Postcompression of picosecond pulses into the few-cycle regime. Opt. Lett. 45(9), 2572–2575 (2020)

    Article  ADS  Google Scholar 

Download references

Funding

This research was funded by National Natural Science Foundation of China (61925507, 62075227, 62205351, 22227901), Shanghai Rising-Star Program (21QA1410200), Youth Innovation Promotion Association CAS (2020248).

Author information

Authors and Affiliations

Authors

Contributions

Luo and Song wrote the manuscript, designed and completed the experiments; Liu, Shen, and Sun participated in the experiments; Leng and Peng provided guidance and financial support. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jiajun Song, Yujie Peng or Yuxin Leng.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo , G., Song, J., Peng, Y. et al. High power and excellent beam quality rod Yb: YAG regenerative amplifier. Appl. Phys. B 130, 93 (2024). https://doi.org/10.1007/s00340-024-08223-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08223-y

Navigation