Skip to main content
Log in

Attenuation of electromagnetic wave propagation in Martian dust storms

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Mars dust storms can significantly affect the radio communication link. In this paper, we proposed a predictive model based on Rayleigh theory. The attenuation of electromagnetic waves (EMWs) propagation in Martian dust storms is calculated using the model, in which the total dust optical depth, the charges carried by Mars dust particles, equivalent radius of Mars dust particles and the EMWs frequency are considered simultaneously. It is found that the charges enhance the absorption of EMWs by Martian dust storms, resulting in a significant attenuation of EMWs in Martian dust storms when at the UHF/S/X/Ka band. While at the Terahertz band, the attenuation is not affected by the charge carried on the dust particle, and the attenuation is more significant. The attenuation is positively related to the total dust optical depth. Furthermore, the attenuation range of EMWs in the Mars communication band of interest in a Martian dust storm was investigated. Our results provide a reference for EMWs propagation in Martian dust storms and it is important to the future Martian communication design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. P. Gierasch, J., Goody, R., M., A model of a martian great dust storm. J Atmos 30, 169–79 (1973)

    Article  ADS  Google Scholar 

  2. P.J. Gierasch, Martian dust storms. Rev Geophys 12(4), 730–734 (1974)

    Article  ADS  Google Scholar 

  3. C. Leovy, Weather and climate on mars. Nature 412, 245–9 (2001)

    Article  ADS  Google Scholar 

  4. L. Ojha, K. Lewis, S. Karunatillake, M. Schmidt, The medusae fossae formation as the single largest source of dust on mars. Nat Commun 9, 1–7 (2018)

    Article  Google Scholar 

  5. A.A. Fedorova, F. Montmessin, A.V. Rodin, O.I. Korablev, J.L. Bertaux, Evidence for a bimodal size distribution for the suspended aerosol particles on mars. Icarus 231, 239–60 (2014)

    Article  ADS  Google Scholar 

  6. N.A. Shekh, V. Dviwedi, J.P. Pabari. Effect of Sandstorm on Radio Propagation Model of Mars. In: ed. by J.S. Raj International Conference on Mobile Computing and Sustainable Informatics. ICMCSI 2020, EAI/SpringerInnovations in Communication and Computing (Springer, Cham, 2021). https://doi.org/10.1007/978-3-030-49795-8_43

    Book  Google Scholar 

  7. E. Smith, W. Flock, Propagation through martian dust at 8.5 and 32 ghz. The Telecommunications and Data Acquisition. Report. (1986). https://ntrs.nasa.gov/api/citations/19870005926/downloads/19870005926.pdf

  8. Z. Diao, Q. Jing, W. Zhong, Comparison of the influence of martian and earth’s atmospheric environments on terahertz band electromagnetic waves. Int. J. Commun Syst 34, e4894 (2021)

    Article  Google Scholar 

  9. S. Bonafini, C. Sacchi, 3D Ray-tracing Analysis of Radio Propagation on Mars Surface, 2021 IEEE AerospaceConference (50100) (IEEE, 2021), pp. 1–10. https://doi.org/10.1109/AERO50100.2021.9438180

    Chapter  Google Scholar 

  10. W. Farrell, M. Kaiser, M. Desch, J. Houser, S. Cummer, D. Wilt et al., Detecting electrical activity from martian dust storms. J Geophys Res: Planets 104, 3795–3801 (1999)

    Article  Google Scholar 

  11. M.K. Mazumder, P. Srirama, R. Sharma, A. Biris, I. Hidetaka, S. Trigwell et al., Lunar and martian dust dynamics. IEEE Ind. Appl. Mag 16, 14–21 (2010)

    Article  Google Scholar 

  12. H.F. Eden, B. Vonnegut, Electrical breakdown caused by dust motion in low-pressure atmospheres: considerations for mars. Science (1973). https://doi.org/10.1126/science.180.4089.962

    Article  Google Scholar 

  13. A.D. Moore, Electrostatics and its applications: Wiley; (1973). https://doi.org/10.1002/aic.690200238

  14. O. Melnik, M. Parrot, Electrostatic discharge in martian dust storms. J Geophys Res Atmos 103, 29107–29118 (1998)

    Article  ADS  Google Scholar 

  15. Y.H. Zhou, Q.S. He, X.J. Zheng, Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles. Eur Phys J E. 17, 181–187 (2005)

    Article  Google Scholar 

  16. X. Li, L. Xie, X. Zheng, The comparison between the mie theory and the rayleigh approximation to calculate the em scattering by partially charged sand. J. Quant. Spectrosc. Radiat. Transfer 113, 251–258 (2012)

    Article  ADS  Google Scholar 

  17. X. Dou, L. Xie, Electromagnetic wave attenuation due to the charged particles in dust and sand (DUSA) storms. J Quant Spectrosc Radiat Transf 196, 169–75 (2017)

    Article  ADS  Google Scholar 

  18. M. Kocifaj, L. Kómar, F. Kundracik, P. Markoš, J. Petržala, G. Videen, The nature, amplitude and control of microwave attenuation in the atmosphere. J Geophys Res Atmos (2021). https://doi.org/10.1029/2021JD034978

    Article  Google Scholar 

  19. D.M.Hansen, M.K.Sue, C.M.Ho, M.Connally, T.K.Peng, R.J.Cesarone et al, Frequency bands for mars in-situ communications. 2001 IEEE Aerosp Conf Proceeding (Cat No 01TH8542): IEEE; (2001) 3:3-1195

  20. H.C. Hulst, H.C. van de Hulst, Light scattering by small particles: John Wliey & Sons; 1981, New York

  21. F. Forget, L. Montabone, Atmospheric dust on Mars: a review. 47th International Conference on Environmental Systems; 2017

  22. C. Ho, N. Golshan, A. Kliore, Radio wave propagation for communication on and around mars, JPL Publication 02-5, Chapter 2, pp. 7, 2002

  23. C.F.Bohren, D.R.Huffman, Absorption and Scattering of Light by Small Particles: John Wiley & Sons, Inc.; 1983

  24. D. Aspnes, Local-field effects and effective-medium theory: a microscopic perspective. Am J Phys 50, 704–9 (1982)

    Article  ADS  Google Scholar 

  25. A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka et al., Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles. J Appl Phys 112, 103531 (2012)

    Article  ADS  Google Scholar 

  26. X. Zeng, X. Li, S. Wang, S. Li, N. Spring, H. Tang et al., JMSS-1: a new Martian soil simulant. Earth Planets Sp 67, 72 (2015)

    Article  ADS  Google Scholar 

  27. C. Leuschen, Analysis of the complex permittivity and permeability of a Martian soil simulant from 10 MHz to 1 GHz, In: IEEE 1999 International Geoscience and Remote Sensing Symposium IGARSS'99 (Cat No 99CH36293): IEEE; 1999, pp. 2264–6. https://doi.org/10.1109/IGARSS.1999.775096

  28. K.K. Williams, R. Greeley, Measurements of dielectric loss factors due to a martian dust analog. J Geophys Res: Planets (2004). https://doi.org/10.1029/2002JE001957

    Article  Google Scholar 

  29. D.A. Robinson, S.B. Jones, J.M. Blonquist, R. Heinse, I. Lebron, T.E. Doyle, The dielectric response of the tropical hawaiian mars soil simulant jsc mars-1. Soil Sci Soc Am J 73, 1113–8 (2009)

    Article  Google Scholar 

  30. A.M. Brown, M.T. Sheldon, H.A. Atwater, Electrochemical tuning of the dielectric function of au nanoparticles. ACS Photonics 2, 459–464 (2015)

    Article  Google Scholar 

  31. A. Yen, R. Gellert, C. Schroder, R. Morris, J. Bell, A. Knudson et al., An integrated view of the chemistry and mineralogy of martian soils. Nature 436, 49–54 (2005)

    Article  ADS  Google Scholar 

  32. R.V. Morris, G. KlingelhFer, C. SchrDer, D.S. Rodionov, A. Yen, D.W. Ming et al., Mossbauer mineralogy of rock soil and dust at meridiani planum mars opportunity’s journey across sulfate rich outcrop basaltic sand and dust and hematite lag deposits. J Geophys Res Atmos. (2006). https://doi.org/10.1029/2006JE002791

    Article  Google Scholar 

  33. R.V. Morris, G. Klingelhöfer, C. Schröder, D.S. Rodionov, A. Yen, D.W. Ming et al., Mössbauer mineralogy of rock, soil, and dust at gusev crater, mars: spirit’s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the columbia hills. J Geophys Res: Planets (2006). https://doi.org/10.1029/2005JE002584

    Article  Google Scholar 

  34. H.Y. Mcsween, I.O. Mcglynn, A.D. Rogers, Determining the modal mineralogy of martian soils. J Geophys Res Atmos (2010). https://doi.org/10.1029/2010JE003582

    Article  Google Scholar 

  35. D.L. Bish, D. Blake, D. Vaniman, S. Chipera, R. Morris, D. Ming et al., X-ray diffraction results from mars science laboratory mineralogy of rocknest at gale crater. Science (2013). https://doi.org/10.1007/978-1-4614-6339-9_12

    Article  Google Scholar 

  36. A.D. Toigo, M.I. Richardson, H. Wang, S.D. Guzewich, C.E. Newman, The cascade from local to global dust storms on mars: temporal and spatial thresholds on thermal and dynamical feedback. Icarus 302, 514–36 (2018)

    Article  ADS  Google Scholar 

  37. G. Wood, S. Asmar, T. Rebold, R. Lee, Mars pathfinder entry, descent, and landing communications. The Telecommun Data Acquis Prog Rep 42–131(1997), 1 (1997)

    Google Scholar 

Download references

Acknowledgements

This research is supported by Natural Science Foundation of Gansu Province (No. 23JRRA895, No. 21JR7RA334), the Youth Science Foundation of Lanzhou Jiaotong University (No. 2022046) and Natural Science Foundation of Ningxia Province (No. 2022AAC03643). The authors would like to express their sincere appreciation for these supports.

Funding

The youth science foundation of lanzhou jiaotong university,no. 2022046,natural science foundation of gansu province,no. 23JRRA895,No. 21JR7RA334,natural science foundation of ningxia province,no. 2022AAC03643

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Xvqiang Dou; Data curation, Xvqiang Dou and Juan Wang; Formal analysis, Xvqiang Dou; Investigation, Wenhan Cao; Methodology, Juan Wang; Project administration, Xvqiang Dou; Software, Xvqiang Dou; Validation, Xvqiang Dou and Wenhan Cao; Visualization, Xvqiang Dou; Writing – original draft, Xvqiang Dou; Writing – review & editing, Xvqiang Dou, Wenhan Cao and Juan Wang. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xvqiang Dou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, X., Cao, W. & Wang, J. Attenuation of electromagnetic wave propagation in Martian dust storms. Appl. Phys. B 130, 73 (2024). https://doi.org/10.1007/s00340-024-08209-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08209-w

Navigation