Skip to main content
Log in

Faraday isolator with compensation depolarization caused by Verdet constant temperature dependence

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Thermally induced depolarization is known to be the principal factor limiting the usage of Faraday devices in laser radiation with high average power. In a number of practically important cases, the major contribution to the depolarization in Faraday devices is inhomogeneous Faraday rotation due to the temperature dependence of the Verdet constant. At the moment there are no satisfactory solutions to this problem. In this work a new scheme of a Faraday isolator with compensation of the contributions to thermally induced depolarization from the temperature dependence of the Verdet constant and thermally induced birefringence was proposed. The efficiency of using the proposed scheme and comparison with known schemes is analyzed analytically and numerically on an example of two magneto-optical crystals: TGG at cryogenic temperature and EuF2 in critical orientation at room temperature in which the contribution to thermally induced depolarization from non-uniform Faraday rotation due to the temperature dependence of the Verdet constant is major.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. O. Slezak, D. Vojna, J. Pilar, M. Divoky, O. Denk, M. Hanus, P. Navratil, M. Smrz, A. Lucianetti, T. Mocek, Opt. Lett. 48(13), 3471 (2023)

    Article  ADS  Google Scholar 

  2. I.L. Snetkov, A.V. Voitovich, O.V. Palashov, E.A. Khazanov, IEEE J. Quantum Elect. 50(6), 434 (2014)

    Article  ADS  Google Scholar 

  3. E.A. Khazanov, Phys. Usp. 59(9), 886 (2016)

    Article  ADS  Google Scholar 

  4. E.A. Mironov, I.L. Snetkov, A.V. Starobor, O.V. Palashov, Appl. Phys. Lett. 122, 10 (2023)

    Article  Google Scholar 

  5. I. Snetkov, J. Li, Magnetochem. 8, 12 (2022)

    Article  Google Scholar 

  6. D.S. Zheleznov, A.V. Starobor, O.V. Palashov, E.A. Khazanov, J. Opt. Soc. Am. B 29(4), 786 (2012)

    Article  ADS  Google Scholar 

  7. R. Yasuhara, I. Snetkov, A. Starobor, E. Mironov, O. Palashov, Opt. Express 24(14), 15486 (2016)

    Article  ADS  Google Scholar 

  8. I.L. Snetkov, D.A. Permin, S.S. Balabanov, O.V. Palashov, Appl. Phys. Lett. 108(16), 161905 (2016)

    Article  ADS  Google Scholar 

  9. D.S. Zheleznov, E.A. Khazanov, I.B. Mukhin, O.V. Palashov, A.V. Voitovich, IEEE J. Quantum Elect. 43(6), 451 (2007)

    Article  ADS  Google Scholar 

  10. I.L. Snetkov, IEEE J. Quantum Electron. 54(2), 1 (2018)

    Article  Google Scholar 

  11. E.A. Khazanov, Quantum Electron. 29(1), 59 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  12. I.L. Snetkov, O.V. Palashov, I.B. Mukhin, E.A. Khazanov, Opt. Express 19(7), 6366 (2011)

    Article  ADS  Google Scholar 

  13. I.L. Snetkov, O.V. Palashov, Appl. Phys. B 109(2), 239 (2012)

    Article  ADS  Google Scholar 

  14. S. Matsumoto, S. Suzuki, Appl. Opt. 25, 12 (1986)

    Google Scholar 

  15. I. Snetkov, A. Yakovlev, Opt. Lett. 47, 7 (2022)

    Google Scholar 

  16. A. Yakovlev, I. Snetkov, O. Palashov, Opt. Mater. 77, 127–131 (2018). https://doi.org/10.1016/j.optmat.2018.01.027

    Article  ADS  Google Scholar 

  17. E.A. Mironov, A.V. Voitovich, A.V. Starobor, O.V. Palashov, Appl. Opt. 53(16), 3486 (2014)

    Article  ADS  Google Scholar 

  18. C.F. Buhrer, Opt. Lett. 14, 21 (1989)

    Article  ADS  Google Scholar 

  19. E.A. Khazanov, O.V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, IEEE J. Quantum Elect. 35(8), 1116 (1999)

    Article  ADS  Google Scholar 

  20. I.L. Snetkov, IEEE J. Quantum Electron. 57(5), 7000108 (2021)

    Article  Google Scholar 

  21. M.J. Tabor, F.S. Chen, J. Appl. Phys. 40, 7 (1969)

    Article  Google Scholar 

  22. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. Reitze, Appl. Opt. 41(3), 483 (2002)

    Article  ADS  Google Scholar 

  23. A.V. Mezenov, L.N. Soms, A.I. Stepanov, Thermooptics of Solid-State Lasers (Mashinebuilding, Leningrad, 1986)

    Google Scholar 

  24. R. Peters, C. Krankel, S.T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O.H. Heckl, C.R.E. Baer, C.J. Saraceno, T. Südmeyer, U. Keller, Appl. Phys. B 102(3), 509 (2011)

    Article  ADS  Google Scholar 

  25. E.A. Mironov, O.V. Palashov, I.L. Snetkov, S.S. Balabanov, Laser Phys. Lett. 17(12), 125801 (2020)

    Article  ADS  Google Scholar 

  26. I.L. Snetkov, R. Yasuhara, A.V. Starobor, E.A. Mironov, O.V. Palashov, IEEE J. Quantum Electron. 51(7), 7000307 (2015)

    Article  Google Scholar 

  27. E.A. Mironov, O.V. Palashov, A.V. Voitovich, D.N. Karimov, I.A. Ivanov, Opt. Lett. 40(21), 4919 (2015)

    Article  ADS  Google Scholar 

  28. E.A. Mironov, O.V. Palashov, A.K. Naumov, R.D. Aglyamov, V.V. Semashko, Appl. Phys. Lett. 119, 7 (2021)

    Google Scholar 

  29. A.A. Jalali, E. Rogers, K. Stevens, Opt. Lett. 42, 5 (2017)

    Article  Google Scholar 

  30. A.V. Starobor, E.A. Mironov, M.R. Volkov, D.N. Karimov, I.A. Ivanov, A.V. Lovchev, A.K. Naumov, V.V. Semashko, and O.V. Palashov, Opt. Mater. 99, (2020). https://doi.org/10.1016/j.optmat.2019.109542

  31. D.S. Zheleznov, A.V. Starobor, O.V. Palashov, Opt. Mater. 46, 526 (2015)

    Article  ADS  Google Scholar 

  32. E.A. Mironov, O.V. Palashov, Opt. Quantum Electron. 51, 2 (2019)

    Article  Google Scholar 

  33. A.V. Starobor, D.S. Zheleznov, O.V. Palashov, E.A. Khazanov, J. Opt. Soc. Am. B 28(6), 1409 (2011)

    Article  ADS  Google Scholar 

  34. X. Li, I.L. Snetkov, A. Yakovlev, Q. Liu, X. Liu, Z. Liu, P. Chen, D. Zhu, L. Wu, Z. Yang, T. Xie, H. Chen, O. Palashov, J. Li, J. Adv. Ceram. 10, 2 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Center of Excellence «Center of Photonics» funded by the Ministry of Science and Higher Education of the Russian Federation, contract No. 075-15-2022-316.

Author information

Authors and Affiliations

Authors

Contributions

I.S. was responsible for problem formulation, theoretical and numerical analysis, drawing up conclusions, writing text and figures preparation

Corresponding author

Correspondence to Ilya Snetkov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snetkov, I. Faraday isolator with compensation depolarization caused by Verdet constant temperature dependence. Appl. Phys. B 130, 76 (2024). https://doi.org/10.1007/s00340-024-08205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08205-0

Navigation