Skip to main content
Log in

VUV lasers pumped by diffuse discharges

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Parameters of stimulated emission in diffuse discharges formed in a sharply inhomogeneous electric field by run-away electrons in mixtures of rare gases with additions of hydrogen and fluorine at pressures up to 10 atm are studied. Efficient VUV lasing was obtained at wavelengths from 148 to 193 nm on the transitions of hydrogen, fluorine and exciplex ArF* molecules. It was shown that the addition of helium buffer gas increases the pulse duration, while neon addition improves output energy of VUV laser on H2 Lyman band. The laser pulse duration over 10 ns and the output of 0.12 mJ were obtained. The diffuse discharge in mixtures of He with F2 was found to form by successive ionization waves. It was shown that laser pulse at 157 nm has three peaks, which correspond to the maxima of the diffuse discharge current. Therewith the first or second peak of laser radiation has the maximum intensity depending on the amplitude of the conduction current in the primary ionization wave. Maximal F2* laser electrical efficiency of η0 = 0.18% and the output of Q157 = 3.8 mJ were obtained in a He–F2 gas mixture at pressure of 10 atm which exceeds the efficiency of lasers of this type pumped by transverse volume discharges with UV preionization. Long-pulse operation of ArF* laser was achieved in He–Ne–Ar–F2 gas mixture. Lasing at 193 nm continued during two periods of the diffuse discharge current. Total duration of the laser pulse was as long as 40 ns, and the radiation energy at 193 nm was as high as 2 mJ from an active volume of 20 cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P. Das, R.L. Sandstrom, Advances in excimer laser technology for sub-0.25-μm lithography. Proc. IEEE 90(10), 1637–1652 (2002). https://doi.org/10.1109/JPROC.2002.803665

    Article  Google Scholar 

  2. A.E. Mironov, J. Kim, Y. Huang, A.W. Steinforth, D.J. Sievers, J.G. Eden, Photolithography in the vacuum ultraviolet (172 nm) with sub-400 nm resolution: photoablative patterning of nanostructures and optical components in bulk polymers and thin films on semiconductors. Nanoscale 12(32), 16796–16804 (2020). https://doi.org/10.1039/D0NR04142D

    Article  Google Scholar 

  3. A.I.A. Soliman, C.-T. Wu, T. Utsunomiya, T. Ichii, H. Sugimura, Room temperature direct patterning of nanocrystalline zinc oxide on flexible polymer substrates through vacuum ultraviolet light irradiation. Thin Solid Films 709, 138166 (2020). https://doi.org/10.1016/j.tsf.2020.138166

    Article  ADS  Google Scholar 

  4. I. Knyazev, V. Letokhov, V. Movshev, Efficient and practical hydrogen vacuum ultraviolet laser. IEEE J. Quantum Electron. 11(10), 805–817 (1975). https://doi.org/10.1109/JQE.1975.1068530

    Article  ADS  Google Scholar 

  5. D. Mathew, H.M.J. Bastiaens, K.-J. Boller, P.J.M. Peters, Current filamentation in discharge-excited F2-based excimer laser gas mixtures. Appl. Phys. Lett. 88(10), 101502 (2006). https://doi.org/10.1063/1.2183363

    Article  ADS  Google Scholar 

  6. V.N. Ishchenko, S.A. Kochubeĭ, A.M. Razhev, High-power efficient vacuum ultraviolet F2 laser excited by an electric discharge. Sov. J. Quantum Electron. 16(5), 707–709 (1986). https://doi.org/10.1070/QE1986v016n05ABEH006868

    Article  ADS  Google Scholar 

  7. V.V. Atejev, S.K. Vartapetov, A.N. Zhukov, M.A. Kurzanov, A.Z. Obidin, V.A. Yamschikov, Efficient excitation conditions for an electric-discharge F2 laser. Quant. Electron. 33(8), 677–683 (2003). https://doi.org/10.1070/QE2003v033n08ABEH002477

    Article  ADS  Google Scholar 

  8. R.W. Waynant, J.D. Shipman Jr., R.C. Elton, A.W. Ali, Laser emission in the vacuum ultraviolet from molecular hydrogen. Proc. IEEE 59(4), 679–684 (1971). https://doi.org/10.1109/PROC.1971.8235

    Article  Google Scholar 

  9. V.F. Tarasenko, Runaway electrons in diffuse gas discharges. Plasma Sources Sci. Technol. 29(3), 034001 (2020). https://doi.org/10.1088/1361-6595/ab5c57

    Article  ADS  Google Scholar 

  10. A.N. Panchenko, D.V. Beloplotov, V.V. Kozhevnikov, M.I. Lomaev, D.A. Sorokin, V.F. Tarasenko, Emission of xenon in the spectral range of 120–800 nm upon excitation by diffuse and spark discharges. Quant. Electron. 51(7), 649–654 (2021). https://doi.org/10.1070/QEL17548

    Article  ADS  Google Scholar 

  11. V.F. Tarasenko, A.N. Panchenko, V.V. Kozhevnikov, Efficient lasing in mixtures of helium and fluorine in diffuse discharges formed by runaway electrons. Quant. Electron. 50(10), 900–903 (2020). https://doi.org/10.1070/QEL17384

    Article  ADS  Google Scholar 

  12. B. Feng, A.N. Panchenko, C. Zhang, V.F. Tarasenko, C. Zhang, D.A. Sorokin, V.V. Kozevnikov, T. Shao, Emission spectra of argon and hydrogen excited by the pulses with durations of 0.7 and 160 ns in an inhomogeneous electric field. J. Phys. D Appl. Phys. 55(40), 405202 (2022). https://doi.org/10.1088/1361-6463/ac83d1

    Article  Google Scholar 

  13. A.N. Panchenko, D.A. Sorokin, V.F. Tarasenko, Gas lasers pumped by runaway electrons preionized diffuse discharge. Progress Quantum Electron. 76, 100314 (2021). https://doi.org/10.1016/j.pquantelec.100314

    Article  Google Scholar 

  14. A.N. Panchenko, V.F. Tarasenko, M.I. Lomaev, N.A. Panchenko, A.I. Suslov, Efficient N2 laser pumped by nanosecond diffuse discharge. Opt. Commun. 430, 210–218 (2019). https://doi.org/10.1016/j.optcom.2018.08.014

    Article  ADS  Google Scholar 

  15. G.A. Mesyats, S.D. Korovin, V.V. Rostov, V.G. Shpak, M.I. Yalandin, The RADAN series of compact pulsed power generators and their application. Proc. IEEE 92(7), 1166–1179 (2004). https://doi.org/10.1109/JPROC.2004.829005

    Article  Google Scholar 

  16. F. Le Pimpec, Ch.J. Milne, Ch.P. Hauri, F. Ardana-Lamas, Quantum efficiency of technical metal photocathodes under laser irradiation of various wavelengths. Appl. Phys. A 112(3), 647–661 (2013). https://doi.org/10.1007/s00339-013-7600-z

    Article  ADS  Google Scholar 

  17. H. Henneken, F.S. Cholze, M. Krumrey, G. Ulm, Quantum efficiencies of gold and copper photocathodes in the VUV and X-ray range. Metrologia 37(5), 485–488 (2000). https://doi.org/10.1088/0026-1394/37/5/31

    Article  ADS  Google Scholar 

  18. E.B. Sozer, C. Jiang, M.A. Gundersen, R.J. Umstattd, Quantum efficiency measurements of photocathode candidates for back-lighted thyratrons. IEEE Trans. Dielectr. Electr. Insul. 16(4), 993–998 (2009). https://doi.org/10.1109/TDEI.2009.5211845

    Article  Google Scholar 

  19. V. Nassisi, A. Beloglazov, E. Giannico, M.R. Perrone, A. Rainò, Emission and emittance measurements of electron beams generated from Cu and diamond photocathodes. J. Appl. Phys. 84(4), 2268–2271 (1998). https://doi.org/10.1063/1.368293

    Article  ADS  Google Scholar 

  20. P.A. Bazhulin, I.N. Knyazev, G.G. Petrash, On the possibility of stimulated emission in the far ultra violet. Sov. Phys. JETP 23(3), 649–650 (1965)

    ADS  Google Scholar 

  21. A.W. Ali, A.C. Kolb, Hydrogen molecular vacuum ultraviolet laser theory. Appl. Phys. Lett. 13(8), 258–261 (1968). https://doi.org/10.1063/1.1652600

    Article  ADS  Google Scholar 

  22. R.T. Hodgson, Vacuum-ultraviolet laser action observed in the Lyman bands of molecular hydrogen. Phys. Rev. Lett. 25(8), 494–497 (1970). https://doi.org/10.1103/PhysRevLett.25.494

    Article  ADS  Google Scholar 

  23. R.W. Waynant, J.D. Shipman Jr., R.C. Elton, A.W. Ali, Vacuum ultraviolet laser emission from molecular hydrogen. Appl. Phys. Lett. 17(9), 383–384 (1970). https://doi.org/10.1063/1.1653445

    Article  ADS  Google Scholar 

  24. W. Ali, P.C. Kepple, H2 Lyman and Werner bands laser theory. Appl. Opt. 11(11), 2591–2596 (1972). https://doi.org/10.1364/AO.11.002591

    Article  ADS  Google Scholar 

  25. A.W. Ali, A.C. Kolb, A.D. Anderson, Theory of the pulsed molecular nitrogen laser. Appl. Opt. 6(12), 2115–2125 (1967). https://doi.org/10.1364/AO.6.002115

    Article  ADS  Google Scholar 

  26. M. Goldsmith, I.N. Kniazev, A simple compact high-repetition-rate hydrogen VUV laser for scientific applications. J. Appl. Phys. 48(12), 4912–4921 (1977). https://doi.org/10.1063/1.323619

    Article  ADS  Google Scholar 

  27. V.S. Antonov, I.N. Knyazev, V.G. Movshev, High-repetition-frequency operation of vacuum ultraviolet hydrogen laser. Sov. J. Quantum Electron. 5(6), 709–711 (1975). https://doi.org/10.1070/qe1975v005n06abeh011348

    Article  ADS  Google Scholar 

  28. P.M. Lozovskiĭ, S.P. Chernov, P.B. Essel’bakh, High-power hydrogen laser emitting vacuum ultraviolet radiation at high pulse repetition frequency. Sov. J. Quantum Electron. 7(7), 916–917 (1977). https://doi.org/10.1070/QE1977v007n07ABEH012732

    Article  ADS  Google Scholar 

  29. W. Ross, S. Florek, J. Gatzke, Investigation of some elementary processes in a vacuum-UV hydrogen laser discharge. Opt. Commun. 23(1), 29–32 (1977). https://doi.org/10.1016/0030-4018(77)90118-3

    Article  ADS  Google Scholar 

  30. M. Anguš, A. Annušová, J. Krištof, P. Veis, Molecular hydrogen Lyman sand system in vacuum UV emissions of H2–Ar glow discharge. Acta Phys. Univ. Comenianae LIII, 27–35 (2016)

    Google Scholar 

  31. U. Fantz, S. Briefi, D. Rauner, D. Wunderlich, Quantification of the VUV radiation in low pressure hydrogen and nitrogen plasmas. Plasma Sources Sci. Technol. 25(4), 045006 (2016). https://doi.org/10.1088/0963-0252/25/4/045006

    Article  ADS  Google Scholar 

  32. A.C. Fozza, M. Moisan, M.R. Wertheimer, Vacuum ultraviolet to visible emission from hydrogen plasma: effect of excitation frequency. J. Appl. Phys. 88(1), 20–33 (2000). https://doi.org/10.1063/1.373618]

    Article  ADS  Google Scholar 

  33. A. Holländer, M.R. Wertheimer, Vacuum ultraviolet emission from microwave plasmas of hydrogen and its mixtures with helium and oxygen. J Vacuum Sci Technol A 12(3), 879–882 (1994). https://doi.org/10.1116/1.579271

    Article  ADS  Google Scholar 

  34. V.F. Tarasenko, EKh. Baksht, A.G. Burachenko, M.I. Lomaev, D.A. Sorokin, Modes of generation of runaway electron beams in He, H2, Ne, and N2 at a pressure of 1–760 Torr. IEEE Trans. Plasma Sci. 38(10), 2583–2587 (2010). https://doi.org/10.1109/TPS.2010.2041474

    Article  ADS  Google Scholar 

  35. S.N. Ivanov, V.V. Lisenkov, Study of the formation time of a self-sustained subnanosecond discharge at high and ultrahigh gas pressures. Plasma Phys. Rep. 44(3), 369–377 (2018). https://doi.org/10.1134/S1063780X1803004

    Article  ADS  Google Scholar 

  36. I.N. Knyazev, V.S. Letokhov, V.G. Movshev, On the collisional four-level H2 VUV laser. Opt. Commun. 6(4), 424–426 (1972). https://doi.org/10.1016/0030-4018(72)90173-3

    Article  ADS  Google Scholar 

  37. J.J. Kim, G. Baer, R.N. Dexter, Excitation mechanisms of the e-beam-excited hydrogen laser. Phys. Rev. A 13(3), 1115–1121 (1976). https://doi.org/10.1103/PhysRevA.13.1115

    Article  ADS  Google Scholar 

  38. E. Robert, A. Khacef, C. Cachoncinlle, J.M. Pouvesle, Time-resolved spectroscopy of high pressure rare gases excited by an energetic flash X-ray source. Opt. Commun. 117(1–2), 179–188 (1995). https://doi.org/10.1016/0030-4018(94)00664-G

    Article  ADS  Google Scholar 

  39. A.M. Boĭchenko, V.F. Tarasenko, E.A. Fomin, S.I. Yakovlenko, Broadband emission continua in rare gases and in mixtures of rare gases with halides. Quantum Electron. 23(1), 3–25 (1993). https://doi.org/10.1070/QE1993v023n01ABEH002929

    Article  ADS  Google Scholar 

  40. E. Robert, A. Khacef, C. Cachoncinlle, J.M. Pouvesle, Modeling of high-pressure rare gas plasmas excited by an energetic flash X-ray source. IEEE J. Quant. Electron. 33(11), 2119–2127 (1997). https://doi.org/10.1109/3.641328

    Article  ADS  Google Scholar 

  41. G.N. Gerasimov, Optical spectra of binary rare-gas mixtures. Phys. Usp. 47(2), 149–168 (2004). https://doi.org/10.1070/PU2004v047n02ABEH001681

    Article  ADS  Google Scholar 

  42. W. Lochte-Holtgreven (ed.), Plasma diagnostics (North-Holland, Amsterdam, 1968)

    Google Scholar 

  43. V.S. Antonov, I.N. Knyazev, V.S. Letokhov, V.G. Movshev, Hydrogen laser in vacuum ultraviolet at atmospheric pressure. JETP Lett. 17(10), 393–395 (1973)

    ADS  Google Scholar 

  44. D.V. Beloplotov, V.F. Tarasenko, D.A. Sorokin, M.I. Lomaev, Formation of ball streamers at a subnanosecond breakdown of gases at a high pressure in a non-uniform electric field. JETP Lett. 106(10), 653–658 (2017). https://doi.org/10.7868/S0370274X17220064

    Article  ADS  Google Scholar 

  45. N.Y. Babaeva, G.V. Naidis, D.V. Tereshonok, V.F. Tarasenko, D.V. Beloplotov, D.A. Sorokin, Formation of wide negative streamers in air and helium: the role of fast electrons. J. Phys. D Appl. Phys. 56(3), 035205 (2022). https://doi.org/10.1088/1361-6463/aca776

    Article  ADS  Google Scholar 

  46. Ch. Köhn, O. Chanrion, T. Neubert, Electron acceleration during streamer collisions in air. Geophys. Res. Lett. 44(5), 2604–2613 (2017). https://doi.org/10.1002/2016GL072216

    Article  ADS  Google Scholar 

  47. M.-G. Meisel, T. Boboc, M. Wagner, H. Langhoff, Miniature hydrogen laser working at high pressure. Opt. Commun. 147(1–3), 83–88 (1998). https://doi.org/10.1016/0030-4018(77)90118-3

    Article  ADS  Google Scholar 

  48. V.F. Tarasenko, D.A. Sorokin, M.I. Lomaev, Generation of dual pulses of the runaway electron beam current during the subnanosecond breakdown of atomic and molecular gases. Tech. Phys. 61(10), 1551–1560 (2016). https://doi.org/10.1134/S106378421610025X

    Article  Google Scholar 

  49. N.D. Schmieder, D.J. Brink, T.I. Salamon, E.G. Jones, A high pressure 585.3 nm neon hydrogen laser. Opt. Commun. 36(3), 223–226 (1981). https://doi.org/10.1016/0030-4018(81)90362-X

    Article  ADS  Google Scholar 

  50. T. Salamon, D. Schmieder, The inversion mechanism of the 585.3 nm neon laser. Opt. Commun. 62(5), 323–327 (1987). https://doi.org/10.1016/0030-4018(87)90298-7

    Article  ADS  Google Scholar 

  51. T.F. Moran, L. Friedman, Neon–hydrogen ion–molecule reactions. J. Chem. Phys. 39(10), 2491–2500 (1963). https://doi.org/10.1063/1.1734052

    Article  ADS  Google Scholar 

  52. D. Dziczek, J.M. Ajello, G.K. James, D.L. Hansen, Cascade contribution to H2 Lyman band from e-impact. Phys. Rev. A 61(6), 064702 (2000). https://doi.org/10.1103/PhysRevA.61.064702

    Article  ADS  Google Scholar 

  53. D. Wünderlich, U. Fantz, Evaluation of state-resolved reaction probabilities and their application in population models for He, H, and H2. Atoms 4(4), 26 (2016). https://doi.org/10.3390/atoms4040026

    Article  ADS  Google Scholar 

  54. N. Masoud, K. Martus, K. Becker, Vacuum ultraviolet emissions from a cylindrical dielectric barrier discharge in neon and neon-hydrogen mixtures. Int. J. Mass Spectrometry 233(1–3), 395–403 (2004). https://doi.org/10.1016/j.ijms.2004.02.007

    Article  ADS  Google Scholar 

  55. C. Backx, G.R. Wight, M.J. Van der Wiel, Oscillator strengths (10–70 eV) for absorption, ionization and dissociation in H2, HD and D2, obtained by an electron-ion coincidence method. J. Phys. B: Atom. Mol. Phys. 9(2), 315–331 (1976). https://doi.org/10.1088/0022-3700/9/2/018

    Article  ADS  Google Scholar 

  56. G.R. Cook, P.H. Metzger, Photoionization and absorption cross sections of H2 and D2 in the vacuum ultraviolet region. J. Opt. Soc. Am. 54(8), 968–972 (1964). https://doi.org/10.1364/JOSA.54.000968

    Article  ADS  Google Scholar 

  57. V.I. Derzhiev, A.G. Zhidkov, A.V. Koval’, S.I. Yakovlenko, Kinetic model of a Penning Ne laser utilizing a beam He–Ne–Ar and Ne–H2 plasma. Sov. J. Quantum Electron. 19(8), 1016–1021 (1989). https://doi.org/10.1070/QE1989v019n08ABEH008668

    Article  ADS  Google Scholar 

  58. D.A. Zayarnyi, I.V. Kholin, Penning high-pressure lasers on the 3p–3s transitions in neon emitting at 703 and 920 nm. Quantum Electron. 33(6), 474–484 (2003). https://doi.org/10.1070/QE2003v033n06ABEH002439

    Article  ADS  Google Scholar 

  59. J. Wieser, M. Salvermoser, L.H. Shaw, A. Ulrich, D.E. Murnick, H. Dahi, Lyman-alpha emission via resonant energy transfer. J. Phys. B: Atom. Mol. Opt. Phys. 31(20), 4589–4597 (1998). https://doi.org/10.1088/0953-4075/31/20/017

    Article  ADS  Google Scholar 

  60. D.A. Sorokin, V.F. Tarasenko, D.V. Beloplotov, M.I. Lomaev, Features of streamer formation in a sharply non-uniform electric field. J. Appl. Phys. 125(14), 143301 (2019). https://doi.org/10.1063/1.5067294

    Article  ADS  Google Scholar 

  61. P. Parvin, H. Mehravaran, B. Jaleh, Spectral lines of the atomic-fluorine laser from 2 psi (absolute) to 5.5 atm. App. Opt. 40(21), 3532–3538 (2001). https://doi.org/10.1364/AO.40.003532

    Article  ADS  Google Scholar 

  62. T. Shao, V.F. Tarasenko, C. Zhang, A.G. Burachenko, D.V. Rybka, I.D. Kostyrya, M.I. Lomaev, E.K. Baksht, P. Yan, Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field. Rev. Sci. Instrum. 84(5), 05356 (2013). https://doi.org/10.1063/1.4807154

    Article  Google Scholar 

  63. H.M.J. Bastiaens, S.J.M. Peeters, X. Renard, P.J.M. Peters, W.J. Witteman, Long pulse operation of an X-ray preionized molecular fluorine laser excited by a prepulse—main pulse system with a magnetic switch. Appl. Phys. Lett. 72(22), 2791–2793 (1998). https://doi.org/10.1063/1.121460

    Article  ADS  Google Scholar 

  64. S.K. Vartapetov, A.A. Zhigalkin, K.E. Lapshin, A.Z. Obidin, VYu. Khomich, Study of an electric-discharge molecular fluorine VUV laser. Quant. Electron. 36(2), 393–398 (2006). https://doi.org/10.1070/QE2006v036n05ABEH013237

    Article  ADS  Google Scholar 

  65. A.N. Panchenko, V.F. Tarasenko, Efficient gas lasers pumped by double-discharge circuits with semiconductor opening switch. Prog. Quantum Electron. 36(1), 143–193 (2012). https://doi.org/10.1016/j.pquantelec.2012.03.005

    Article  ADS  Google Scholar 

  66. T. Kitamura, Y. Arita, K. Maeda, M. Takasaki, K. Nakamura, Y. Fujiwara, S. Horiguchi, Small-signal gain measurements in a discharge-pumped F2 laser. J. Appl. Phys. 81(6), 2523–2528 (1997). https://doi.org/10.1063/1.364302

    Article  ADS  Google Scholar 

  67. K. Miyazaki, T. Hasama, K. Yamada, T. Fukatsu, T. Eura, T. Sato, Efficiency of a capacitor-transfer-type discharge excimer laser with automatic preionization. J. App. Phys. 60(8), 2721–2728 (1986). https://doi.org/10.1063/1.337102

    Article  ADS  Google Scholar 

  68. M. Ohwa, M. Obara, Theoretical evaluation of the buffer gas effects for a self-sustained discharge ArF laser. J. Appl. Phys. 63(5), 1306–1312 (1988). https://doi.org/10.1063/1.339956

    Article  ADS  Google Scholar 

  69. N. Shinji, F. Hideo, U. Yoshiyuki, Y. Jun, K. Akihiro, G. Toshio, Formation dynamics of excited atoms in an ArF laser using He and Ne buffer gases. J. Appl. Phys. 77(7), 2906–2911 (1995). https://doi.org/10.1063/1.358705

    Article  Google Scholar 

Download references

Acknowledgements

The studies were performed in the framework of the State Task for IHCE SB RAS, project # FWRM-2021-0014.

Author information

Authors and Affiliations

Authors

Contributions

AP prepared experimental equipment, conducted research and analysis of the results, wrote the text of the article VT conducted analysis of the experimental results, wrote the text of the article VK prepared experimental equipment, conducted research and analysis of the results

Corresponding author

Correspondence to Alexei N. Panchenko.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchenko, A.N., Tarasenko, V.F. & Kozevnikov, V.V. VUV lasers pumped by diffuse discharges. Appl. Phys. B 129, 178 (2023). https://doi.org/10.1007/s00340-023-08125-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08125-5

Navigation