Skip to main content
Log in

LD end-pumped passively Q-switched Nd:YLF/SrWO4/Cr4+:YAG solid-state Raman lasers based on Raman modes of 923 cm−1 and 334.5 cm−1

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

LD end-pumped passively Q-switched Nd:YLF/SrWO4/Cr4+:YAG Raman laser for multi-Raman-modes is investigated for the first time. Based on the main Raman mode (923 cm−1), the maximum average output power of 0.462 W is achieved for 1st Stokes laser at 1159 nm. When the pumping power is 2 W, the maximum optical conversion efficiency of 17.4% is obtained with the pulse repetition frequency of 6.6 kHz and pulse width of 21 ns. By selecting an appropriate cavity mirror to suppress stimulated Raman scattering process of main Raman mode, SRS conversion of the minor mode (334.5 cm−1) of SrWO4 crystal is realized separately for the first time in intracavity Raman laser. The maximum output power at 1085 nm obtained is 0.111 W. In experiments, multi-pulse phenomena of Stokes laser output with the main Raman mode (923 cm−1) are observed, which are more obvious for smaller initial transmittance of saturable absorber and higher reflectivity of output coupler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, S. Ding, upon reasonable request.

References

  1. X.H. Che, J. Xu, H.D. Li, S.H. Ding, Analysis of actively Q-switched infrared Raman lasers with crystalline media of multi-Raman-modes. Infrared Phys. Technol. 111, 103474 (2020)

    Google Scholar 

  2. R. Li, R. Bauer, W. Lubeigt, Continuous-wave Nd:YVO4 self-Raman lasers operating at 1109 nm, 1158 nm and 1231 nm. Opt. Express 21, 17745–17750 (2013)

    ADS  Google Scholar 

  3. L. Fan, X.D. Zhao, Y.C. Zhang, X.D. Gu, H.P. Wan, H.B. Fan, J. Zhu, Multi-wavelength continuous-wave Nd:YVO4 self-Raman laser under in-band pumping. Chin. Phys. B 28, 084210 (2019)

    ADS  Google Scholar 

  4. L.J. Wei, M.T. Chen, S.Q. Zhu, S.B. Dai, H. Yin, Z.Q. Chen, A passively Q-switched YVO4 Raman laser with orthogonally polarized emission at 1175.4 nm and 1165.2 nm. Laser Phys. Lett. 15, 125001 (2018)

    ADS  Google Scholar 

  5. L. Zhang, Y.M. Duan, X.H. Mao, Z.H. Li, Y.X. Chen, Y.J. Zhang, H.Y. Zhu, Passively Q-switched YVO4 Raman operation with 816 and 890 cm−1 shifts by respective Raman configurations. Opt. Mater. Express 11, 1815–1823 (2021)

    ADS  Google Scholar 

  6. Y.M. Duan, Y.L. Sun, H.Y. Zhu, Z.H. Li, L. Zhang, G. Zhang, Polarization-dependent YVO4 crystal Raman laser operation with 816 and 890 cm−1 shifts. Opt. Laser Technol. 144, 107429 (2021)

    Google Scholar 

  7. Z.G. Wu, Z.H. Cong, X.H. Chen, X.Y. Zhang, Q.P. Wang, W.X. Lan, W.T. Wang, Y.G. Zhang, Passively Q-switched 1097 nm c-cut Nd:YVO4 self-Raman laser with Cr:YAG saturable absorber. Opt. Laser Technol. 54, 137–140 (2013)

    ADS  Google Scholar 

  8. F. Bai, Z.Y. Jiao, X.F. Xu, Q.P. Wang, High power Stokes generation based on a secondary Raman shift of 259 cm-1 of Nd:YVO4 self-Raman crystal. Opt. Laser Technol. 190, 55–60 (2019)

    ADS  Google Scholar 

  9. H.Y. Lin, X. Pan, X.H. Huang, M. Xiao, X. Liu, D. Sun, W.Z. Zhu, Multi-wavelength passively Q-switched c-cut Nd:YVO4 self-Raman laser with Cr4+:YAG saturable absorber. Opt. Commun. 368, 39–42 (2016)

    ADS  Google Scholar 

  10. H.Y. Lin, X. Pan, X.H. Huang, M. Xiao, Y.C. Xu, W.Z. Zhu, Cr4+:YAG passively Q-switched c-cut Nd:YVO4 self-Raman laser at 1168.6 nm. Infrared Phys. Technol. 75, 56–58 (2016)

    ADS  Google Scholar 

  11. H.Y. Lin, X.H. Huang, D. Sun, X. Liu, Passively Q-switched multi-wavelength Nd:YVO4 self-Raman laser. J. Modern Opt. 63, 1–3 (2016)

    MathSciNet  Google Scholar 

  12. S.Z. Fan, X.Y. Zhang, Q.P. Wang, Z.J. Liu, L. Li, Z.H. Cong, X.H. Chen, X.L. Zhang, 1097 nm Nd:YVO4 self-Raman laser. Opt. Commun. 284, 1642–1644 (2011)

    Google Scholar 

  13. S.T. Li, R.C. Tang, G.Y. Jin, C. Wang, Actively Q-switched intracavity Nd:YVO4/GdVO4 Raman laser operating with multiple Raman shifts of 259, 882 and 890 cm−1. Appl. Phys. B 127, 16 (2021)

    ADS  Google Scholar 

  14. H.Y. Zhu, J.H. Guo, X.K. Ruan, C.W. Xu, Y.M. Duan, Y.J. Zhang, D.Y. Tang, Cascaded self-Raman laser emitting around 1.2–1.3 µm based on a c-cut Nd:YVO4 crystal. IEEE Photon. J. 9, 150087 (2017)

    Google Scholar 

  15. X.H. Qiao, P. Sun, X.L. Wang, H.J. Wang, J. Dong, Broadband multi-longitudinal-mode Yb:YAG/YVO4 coupled Raman microchip laser. J. Phys. Photon. 2, 045007 (2020)

    Google Scholar 

  16. X.J. Wang, X.L. Wang, Z.F. Zheng, X.H. Qiao, J. Dong, 1164.4 nm and 1174.7 nm dual-wavelength Nd:GdVO4/Cr4+:YAG/YVO4 passively Q-switched Raman microchip laser. Appl. Opt. 57, 3198–3204 (2018)

    ADS  Google Scholar 

  17. J.P. Lin, H.M. Pask, Cascaded self-Raman lasers based on 382 cm−1 shift in Nd:GdVO4. Opt. Express 20, 15180–15185 (2012)

    ADS  Google Scholar 

  18. Y.F. Chen, Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser. Appl. Phys. B 78, 685–687 (2004)

    ADS  Google Scholar 

  19. X.Z. Sun, X.H. Zhang, S.T. Li, Y. Dong, LD-pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser operating at 1166 and 1176 nm. Appl. Phys. B 123, 289–293 (2017)

    ADS  Google Scholar 

  20. R.P. Mildren, J.A. Piper, Increased wavelength options in the visible and ultraviolet for Raman lasers operating on dual Raman modes. Opt. Express 16, 3261–3272 (2008)

    ADS  Google Scholar 

  21. M.T. Chang, W.Z. Zhuang, K.W. Su, Y.T. Yu, Y.F. Chen, Efficient continuous-wave self-Raman Yb:KGW laser with a shift of 89 cm−1. Opt. Express 21, 24590–24598 (2013)

    ADS  Google Scholar 

  22. M.S. Ferreira, N.U. Wetter, Yb:KGW self-Raman laser with 89 cm−1 Stokes shift and more than 32% diode-to-Stokes optical efficiency. Opt. Laser Technol. 121, 105835 (2020)

    Google Scholar 

  23. C.Y. Tang, W.Z. Zhuang, K.W. Su, Y.F. Chen, Efficient continuous-wave self-Raman Nd:KGW laser with intracavity cascade emission based on shift of 89 cm−1. IEEE J. Sel. Top. Quan. Elect. 21, 142–147 (2015)

    ADS  Google Scholar 

  24. P.G. Zverev, T.T. Basiev, A.A. Sobol, I.V. Ermakov, W. Gellerman, BaWO4 crystal for quasi-cw yellow Raman laser, in Advanced Solid-State Lasers, vol. 50, ed. by C. Marshall (Optica Publishing Group, Washington, DC, 2001). (paper ME1)

    Google Scholar 

  25. W.J. Sun, Q.P. Wang, Z.J. Liu, X.Y. Zhang, G.T. Wang, F. Bai, W.X. Lan, X.B. Wan, H.J. Zhang, An efficient 1103 nm Nd:YAG/BaWO4 Raman laser. Laser Phys. Lett. 8, 512–515 (2011)

    ADS  Google Scholar 

  26. L. Li, X.Y. Zhang, Z.J. Liu, Q.P. Wang, Z.H. Cong, Y.G. Zhang, W.T. Wang, Z.G. Wu, H.J. Zhang, A high power diode-side-pumped Nd:YAG/BaWO4 Raman laser at 1103 nm. Laser Phys. 23, 045402 (2013)

    ADS  Google Scholar 

  27. L. Fan, X.Y. Wang, X.D. Zhao, J.H. Wang, J. Shen, H.B. Fan, J. Zhu, M.Y. Shen, First-Stokes and second-Stokes multi-wavelength continuous-wave operation in Nd:YVO4/BaWO4 Raman laser under in-band pumping. Chin. Opt. Lett. 18, 111401 (2020)

    ADS  Google Scholar 

  28. M. Frank, S.N. Smetanin, M. Jelínek, D. Vyhlídal, L.I. Ivleva, P.G. Zverev, V. Kubeček, Highly efficient picosecond all-solid-state Raman laser at 1179 and 1227 nm on single and combined Raman lines in a BaWO4 crystal. Opt. Lett. 43, 2527–2530 (2018)

    ADS  Google Scholar 

  29. M. Frank, S.N. Smetanin, M. Jelínek, D. Vyhlídal, V.E. Shukshin, L.I. Ivleva, P.G. Zverev, V. Kubeček, Efficient synchronously-pumped all-solid-state Raman laser at 1178 and 1227 nm on stretching and bending anionic group vibrations in a SrWO4 crystal with pulse shortening down to 1.4 ps. Opt. Laser Technol. 119, 105660 (2019)

    Google Scholar 

  30. M. Frank, S.N. Smetanin, M. Jelínek, D. Vyhlídal, V.E. Shukshin, L.I. Ivleva, E.E. Dunaeva, I.S. Voronina, P.G. Zverev, V. Kubeček, Stimulated Raman scattering in slkali-earth tungstate and molybdate crystals at both stretching and bending Raman modes under synchronous picosecond pumping with multiple pulse shortening down to 1 ps. Crystals 9, 167 (2019)

    Google Scholar 

  31. P. Zhao, H.R. Xia, G.W. Lu, L.X. Li, X.L. Meng, The Analysis for Raman Spectra of Nd:YVO4. Spectrosc. Spectr. Anal. 01, 71–73 (2004)

    Google Scholar 

  32. T.T. Basiev, A.A. Sobol, P.G. Zverev, V.V. Osiko, R.C. Powell, Comparative spontaneous Raman spectroscopy of crystals for Raman lasers. Appl. Opt. 38, 594–598 (1999)

    ADS  Google Scholar 

  33. Y.X. Fan, Y. Liu, Y.H. Duan, Q. Wang, L. Fan, H.T. Wang, G.H. Jia, C.Y. Tu, High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal. Appl. Phys. B 93, 327–330 (2008)

    ADS  Google Scholar 

  34. H.N. Zhang, X.H. Chen, Q.P. Wang, J. Chang, P. Li, Efficient diode-pumped actively Q-switched Nd:YAG/SrWO4 Raman laser operating at 1252.4 nm. Opt. Commun. 335, 28–31 (2015)

    ADS  Google Scholar 

  35. Y.M. Duan, H.Y. Zhu, G. Zhang, C.H. Huang, Y. Wei, C.Y. Tu, Z.J. Zhu, F.G. Yang, Z.Y. You, Efficient 559.6 nm light produced by sum-frequency generation of diode-end-pumped Nd:YAG/SrWO4 Raman laser. Laser Phys. Lett. 7, 491–494 (2010)

    ADS  Google Scholar 

  36. F.G. Yang, Z.Y. You, Z.J. Zhu, Y. Wang, J.F. Li, C.Y. Tu, End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal. Laser Phys. Lett. 7, 14–16 (2010)

    ADS  Google Scholar 

  37. X.H. Chen, X.Y. Zhang, Q.P. Wang, P. Li, S.T. Li, Z.H. Cong, G.H. Jia, C.Y. Tu, Highly efficient diode-pumped actively Q-switched Nd:YAG-SrWO4 intracavity Raman laser. Opt. Lett. 33, 705–707 (2008)

    ADS  Google Scholar 

  38. F.G. Yang, Y. Zhang, X.H. Hu, Y.G. Ke, L. Qiao, S.Z. Hu, Y.H. Wu, Z.C. Xia, D.X. He, Z.Y. You, C.Y. Tu, 1180 nm Raman laser operation of end-pumping Nd:GdAl3(BO3)4/SrWO4 crystal. Laser Phys. 22, 375–376 (2012)

    ADS  Google Scholar 

  39. H. Jelínková, J. Šulc, T.T. Basiev, P.G. Zverev, S.V. Kravtsov, Stimulated Raman scattering in Nd:SrWO4. Laser Phys. Lett. 2, 4–11 (2005)

    ADS  Google Scholar 

  40. Y.M. Duan, F.G. Yang, H.Y. Zhu, Z.J. Zhu, C.H. Huang, Z.Y. You, Y. Wei, G. Zhang, C.Y. Tu, Continuous-wave 560 nm light generated by intracavity SrWO4 Raman and KTP sum-frequency mixing. Opt. Commun. 283, 5135–5138 (2010)

    ADS  Google Scholar 

  41. M. Pollnau, P.J. Hardman, M.A. Kern, W.A. Clarkson, D.C. Hanna, Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG. Phys. Rev. B 58, 16076–16092 (1998)

    ADS  Google Scholar 

  42. M.T. Chen, S.B. Dai, Z.H. Tu, S.Q. Zhu, H. Yin, Z. Li, Y. Zheng, Z.Q. Chen, Frequency expansion of efficient passively Q-switched orthogonally-polarized dual-wavelength laser. Opt. Laser Technol. 122, 105846 (2020)

    Google Scholar 

  43. Z.H. Tu, S.B. Dai, M.T. Chen, H. Yin, S.Q. Zhu, Z. Li, E.C. Ji, Z.Q. Chen, High-peak-power eye-safe orthogonally-polarized dual-wavelength Nd:YLF/KGW Raman laser. Opt. Express 28, 8802–8810 (2020)

    ADS  Google Scholar 

  44. R.C. Botha, W. Koen, M.J.D. Esser, C. Bollig, W.L. Combrinck, H.M. von Bergmann, H.J. Strauss, High average power Q-switched 1314 nm two-crystal Nd:YLF laser. Opt. Lett. 40, 495–497 (2015)

    ADS  Google Scholar 

  45. H.C. Liang, D. Li, E.H. Lin, C.C. Hsu, H.Y. Lin, Investigation of the antiphase dynamics of the orthogonally polarized passively Q-switched Nd:YLF laser. Opt. Lett. 26, 26590–26597 (2018)

    Google Scholar 

  46. Y.K. Bu, C.Q. Tan, N. Chen, Continuous-wave yellow light source at 579 nm based on intracavity frequency-doubled Nd:YLF/SrWO4/LBO Raman laser. Laser Phys. Lett. 8, 439–442 (2011)

    ADS  Google Scholar 

  47. Y. Liu, Z.J. Liu, Z.H. Cong, S.J. Men, J.B. Xia, H. Rao, S.S. Zhang, Efficient Diode-End-Pumped Actively Q-Switched Nd:YLF/SrWO4 Raman Laser. Chin. Phys. Lett. 32, 124201 (2015)

    ADS  Google Scholar 

  48. H. Xu, X. Zhang, Q. Wang, C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, S. Fan, H. Zhang, X. Tao, Diode-pumped passively Q-switched Nd:YAG/SrWO4 intracavity Raman laser with high pulse energy and average output power. Appl. Phys. B 107, 343–348 (2012)

    ADS  Google Scholar 

  49. W.X. Lan, Q.P. Wang, Z.J. Liu, X.Y. Zhang, F. Bai, H.B. Shen, L. Gao, A diode end-pumped passively Q-switched Nd:YAG/KTA Raman laser. Optik 124, 6866–6868 (2013)

    ADS  Google Scholar 

  50. S.H. Ding, X.Y. Zhang, Q.P. Wang, J. Zhang, S.M. Wang, Y.R. Liu, X.H. Zhang, Numerical modelling of passively Q-switched intracavity Raman lasers. J. Phys. D Appl. Phys. 40, 2736–2747 (2007)

    ADS  Google Scholar 

  51. S.H. Ding, X.Y. Zhang, Q.P. Wang, F.F. Su, S.T. Li, S.Z. Fan, Z.J. Liu, J. Chang, S.S. Zhang, S.M. Wang, Y.R. Liu, Highly efficient Raman frequency converter with strontium tungstate crystal. IEEE J. Quantum Electron. 42, 78–84 (2006)

    ADS  Google Scholar 

Download references

Funding

This paper is supported by Natural Science Foundation of Shandong Province (No. ZR2018LF014, ZR2020QF090), Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University (KJS2066), and Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Soochow University (KJS2045).

Author information

Authors and Affiliations

Authors

Contributions

HX: Validation, formal analysis, data curation, writing—review and editing. ZQ: Data curation, writing-original draft preparation. PSVisualization. WS: Investigation. MP: Methodology. ZX: Conceptualization. DS: Conceptualization, investigation, methodology.

Corresponding author

Correspondence to Ding Shuanghong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xinxin, H., Qiaoshuang, Z., Siwei, P. et al. LD end-pumped passively Q-switched Nd:YLF/SrWO4/Cr4+:YAG solid-state Raman lasers based on Raman modes of 923 cm−1 and 334.5 cm−1. Appl. Phys. B 129, 173 (2023). https://doi.org/10.1007/s00340-023-08119-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08119-3

Navigation