Skip to main content
Log in

Optical confinement enhancement of AlGaN-based deep-ultraviolet laser diode by using asymmetrically wide waveguide layers

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The performance of AlGaN-based deep-ultraviolet (DUV) laser diodes (LDs) was investigated by varying the thickness of the upper and lower waveguide (WG) layers. The results show that (1) the asymmetric wide WG layers structure with thick upper and thin lower WG layer can effectively reduce the optical field leakage in the active region and increase the optical confinement factor (OCF) by 31.66% compared to the traditional symmetric wide WG layers structure. (2) The asymmetric wide WG layers improve the stimulated recombination rate, and electro-optical conversion efficiency, increasing the slope efficiency (SE) of the LD to 1.69 W/A at a lower threshold current (Ith) of 30.46 mA. (3) The asymmetric wide WG layers limit the carrier loss, which is due to the improvement of the energy band variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Yamashita, M. Kuwabara, K. Torii, H. Yoshida, A 340-nm-band ultraviolet laser diode composed of GaN well layers. Opt. Express. 21, 3133–3137 (2013)

    Article  ADS  Google Scholar 

  2. Z. Zhang et al., A 271 8 nm deep-ultraviolet laser diode for room temperature Operation. Appl. Phys. Express. 12, 124003 (2019)

    Article  ADS  Google Scholar 

  3. C. Chu, H. Zhang, H. Sun, Ultraviolet optoelectronic devices based on AlGaN-SiC platform: towards monolithic photonics integration system. Nano Energy 77, 105149 (2020)

    Article  Google Scholar 

  4. C. Chu, K. Tian, Y. Zhang, W. Bi, Z. Zhang, Progress in external quantum efficiency for III-nitride based deep ultraviolet light-emitting diodes. Phys. Status. Solidi (A). 216, 1800815 (2019)

    Article  ADS  Google Scholar 

  5. M. Usman et al., Suppressing the efficiency droop in the AlGaN-based UVB LED. Nanotechnology 32, 215703 (2021)

    Article  ADS  Google Scholar 

  6. C.S. Heilingloh, U.W. Aufderhorst, L. Schipper, U. Dittmer, O. Witzke, D. Yang, X. Zheng, K. Sutter, M. Trilling, M. Alt, E. Steinmann, A. Krawczyk, Susceptibility of SARS-CoV-2 to UV irradiation. Am. J. Infect. Control. 48, 1273–1275 (2020)

    Article  Google Scholar 

  7. Y. Saito et al., Efficiency improvement of AlGaN-based deep-ultraviolet light- emitting diodes and their virus inactivation application. Jpn. J. Appl. Phys. 60, 080501 (2021)

    Article  ADS  Google Scholar 

  8. Z. Zhang, M. Kushimoto, M. Horita, N. Sugiyama, L.J. Schowalter, C. Sasaoka, H. Amano, Space charge profile study of AlGaN-based p-type distributed polarization doped claddings without impurity doping for UV-C laser diodes. Appl. Phys. Lett. 117, 152104 (2020)

    Article  ADS  Google Scholar 

  9. M.N. Sharif et al., Performance enhancement of AlGaN deep-ultraviolet laser diode using compositional Al-grading of Si-doped layers. Opt. Laser Technol. 152, 108156 (2022)

    Article  Google Scholar 

  10. J. Yang et al., Realization of 366 nm GaN/AlGaN single quantum well ultraviolet laser diodes with a reduction of carrier loss in the waveguide layers. J. Appl. Phys. 130, 173105 (2021)

    Article  ADS  Google Scholar 

  11. D. Zhao et al., Fabrication of room temperature continuous-wave operation GaN-based ultraviolet laser diodes. J. Semicond. 38, 051001 (2017)

    Article  ADS  Google Scholar 

  12. K. Takeda et al., Internal quantum efficiency and internal loss of ultraviolet laser diodes on the low dislocation density AlGaN underlying layer. Phys. Status. Solidi. C. 8(2), 464 (2011)

    Article  ADS  Google Scholar 

  13. J.L. Lyons et al., First-principles theory of acceptors in nitride semiconductors. Phys. Status. Solidi (b) 252, 900–908 (2015)

    Article  ADS  Google Scholar 

  14. Z. Zhang, J. Kou, S.H. Chen, H. Shao, J. Che, C. Chu, K. Tian, Y. Zhang, W. Bi, H. Kuo, Increasing the hole energy by grading the alloy composition of the p-type electron blocking layer for very high-performance deep ultraviolet light-emitting diodes. Photonics Res. 7, B1–B6 (2019)

    Article  Google Scholar 

  15. Z. Liu et al., Polarization-engineered AlGaN last quantum barrier for efficient deep-ultraviolet light-emitting diodes. Semicond. Sci. Technol. 35, 075021 (2020)

    Article  ADS  Google Scholar 

  16. Z. Xing et al., Reduction of electron leakage of AlGaN-based deep ultraviolet laser diodes using an inverse-trapezoidal electron blocking layer. Chin. Phys. Lett. 37, 027302 (2020)

    Article  ADS  Google Scholar 

  17. Y. Xu et al., Performance improvement of nitride semiconductor-based deep-ultraviolet laser diodes with superlattice cladding layers. Eur. Phys. J. D. (2022). https://doi.org/10.1140/epjd/s10053-022-00506-3

    Article  Google Scholar 

  18. W. Yang et al., Improvement of hole injection and electron overflow by a tapered AlGaN electron blocking layer in InGaN-based blue laser diodes. Appl. Phys. Lett 100, 031105 (2012)

    Article  ADS  Google Scholar 

  19. A. Bojarska et al., Role of the electron blocking layer in the graded-index separate confinement heterostructure nitride laser diodes. Superlattices Microstruct. 116, 114–121 (2018)

    Article  ADS  Google Scholar 

  20. Y. Wang et al., Reduction of electron leakage in a deep ultraviolet nitride laser diode with a double-tapered electron blocking layer. Chinese Phys. Lett. 36, 057301 (2019)

    Article  ADS  Google Scholar 

  21. M. Martens et al., Low absorption loss p-AlGaN superlattice cladding layer for current-injection deep ultraviolet laser diodes. Appl. Phys. Lett. 108, 151108 (2016)

    Article  ADS  Google Scholar 

  22. S. Tanaka et al., AlGaN-based UV-B laser diode with a high optical confinement factor. Appl. Phys. Lett. 118, 163504 (2021)

    Article  ADS  Google Scholar 

  23. M.N. Sharif et al., Enhancement of the optoelectronic characteristics of deep ultraviolet nanowire laser diodes by induction of bulk polarization charge with graded AlN composition in AlxGa1-xN waveguide. Superlattices Microstruct. 145, 106643 (2020)

    Article  Google Scholar 

  24. K. Arakawa et al., 450nm GaInN ridge stripe laser diodes with AlInN/AlGaN multiple cladding layers. Jpn. J. Appl. Phys. 58, 28 (2019)

    Article  Google Scholar 

  25. N. Nepal, J. Li, M.L. Nakarmi, J.Y. Lin, H.X. Jiang, Temperature and compositional dependence of the energy band gap of AlGaN alloys. Appl. Phys. Lett. 87, 242104 (2005)

    Article  ADS  Google Scholar 

  26. I. Vurgaftman, J.R. Meyer, Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675–3696 (2003)

    Article  ADS  Google Scholar 

  27. Z. Xing, F. Wang, Y. Wang, J.J. Liou, Y. Liu, Enhanced performance in deep-ultraviolet laser diodes with an undoped BGaN electron blocking layer. Opt. Express. 30, 36446–36455 (2022)

    Article  ADS  Google Scholar 

  28. M. Kneissl et al., The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics. 13, 233–244 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Supported by the National Nature Science Foundation of China (Grant No. 62174148), National Key Research and Development Program (NKRDP Grant No. 2022YFE0112000, Grant No. 2016YFE0118400), Zhengzhou 1125 Innovation Project (Grant No. ZZ2018-45), and Ningbo 2025 Key Innovation Project (Grant No. 2019B10129).

Author information

Authors and Affiliations

Authors

Contributions

YX: Conceptualization, Methodology, Software, Investigation, Writing—original draft, Writing—review & editing. LJ: Software, Writing—review & editing, Validation. LL: Investigation, Validation. XS: Software, Resources. FW: Supervision, Project administration, Funding acquisition. JJL: Supervision, Project administration. YL: Supervision, Project administration, Funding acquisition, Writing—review & editing, Validation, Resources.

Corresponding authors

Correspondence to Fang Wang or Yuhuai Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Compliance with ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Jia, L., Liu, L. et al. Optical confinement enhancement of AlGaN-based deep-ultraviolet laser diode by using asymmetrically wide waveguide layers. Appl. Phys. B 129, 145 (2023). https://doi.org/10.1007/s00340-023-08088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08088-7

Navigation