Skip to main content
Log in

FBG-based 3D shape sensor based on spun multi-core fibre for continuum surgical robots

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The advance of minimally invasive interventional surgeries has accelerated the iterative upgrading of continuum surgical robots. High compatibility with robotic applications and high precision are key features of sensors for robot navigation. In this paper, a spun multi-core fibre (SMCF) 3D shape sensor for continuum surgical robots is proposed. The sensor is fabricated by ultraviolet (UV) light inscribing fibre Bragg gratings (FBGs) in the SMCF, showing good spectra characteristics. Shape reconstruction is realized by the Frenet–Serret (F–S) frame and sensing characteristics such as twisting, strain and temperature are systematically analyzed. Especially, the twisting characteristics of SMCF and MCF are compared and the feasibility of self-torsional compensation of SMCF is demonstrated. In addition, shape measurement experiments with three known shapes are performed. The mean relative error (MRE) for each shape is 0.49%, 1.90% and 5.13%, respectively. These results show that the proposed sensor can accurately measure 3D shapes with temperature and twisting compensation, enabling its application prospects in the online shape feedback of continuum surgical robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Lu, B. Lu, B. Li, H. Guo, Y.H. Liu, IEEE Robot Autom Lett 6, 4835 (2021)

    Article  Google Scholar 

  2. X.T. Ha, M. Ourak, O. Al-Ahmad, D. Wu, G. Borghesan, A. Menciassi, and E. Vander Poorten, IEEE Sens J 21, 23422 (2021)

    Article  Google Scholar 

  3. R. Zhang, H. Liu, and J. Han, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 925 (2017).

  4. S. Sefati, R. Hegeman, F. Alambeigi, I. Iordachita, P. Kazanzides, H. Khanuja, R. H. Taylor, and M. Armand, IEEE/ASME Transactions on Mechatronics 26, 369–380 (2021).

  5. R. Xu, A. Yurkewich, R.V. Patel, IEEE Robot Autom Lett 1, 1052 (2016)

    Article  Google Scholar 

  6. F. Qi, B. Chen, S. She, S. Gao, Ind. Robot. 48, 259 (2020)

    Article  Google Scholar 

  7. J. Li, F. Zhang, H. Liu, J. Li, F. Zhang, H. Liu, J. Li, F. Zhang, H. Liu, J. Li, Z. Yang, Z. Jiang, IEEE Robot Autom Lett 7, 3130 (2022)

    Article  Google Scholar 

  8. Y. Chitalia, N.J. Deaton, S. Jeong, N. Rahman, J.P. Desai, IEEE Robot Autom Lett 5, 1712 (2020)

    Article  Google Scholar 

  9. V. Modes, T. Ortmaier, J. Burgner-Kahrs, IEEE Sens J 21, 6712 (2021)

    Article  ADS  Google Scholar 

  10. P. Jiao, Y. Xie, S. Wu, X. Liu, Materials 13, 2599 (2020)

    Article  ADS  Google Scholar 

  11. Z. Liu, S. Lu, D. Wang, Y. Guo, and L. Wu, Materials 15, (2022).

  12. V. Vekteris, M. Jurevicius, V. Turla, Appl Phys B 121, 203 (2015)

    Article  ADS  Google Scholar 

  13. I. Floris, J. Madrigal, S. Sales, P. A. Calderón, and J. M. Adam, Mech Syst Signal Process 140, (2020).

  14. A. Wolf, K. Bronnikov, S. Yakushin, A. Dostovalov, S. Zhuravlev, al Alexey Wolf, M. Salganskii, O. Egorova, S. Semjonov, and S. Babin, Seventh European Workshop on Optical Fibre Sensors (EWOFS 2019) 11199, 475 (2019).

  15. W. Bao, N. Sahoo, Z. Sun, C. Wang, S. Liu, Y. Wang, and L. Zhang, Opt Express 28, (2020).

  16. A. Halstuch and A. A. Ishaaya, Opt Lasers Eng 160, (2023).

  17. R. Idrisov, A. Lorenz, M. Rothhardt, and H. Bartelt, Sensors 22, (2022).

  18. R. Mahakud, J. Kumar, O. Prakash, S.K. Dixit, S.V. Nakhe, Appl Phys B 121, 283 (2015)

    Article  ADS  Google Scholar 

  19. J. Xin, W. Zhuang, X. Lou, L. Zhu, M. Dong, Opt. Eng. 58, 1 (2019)

    Article  Google Scholar 

  20. F. Khan, A. Denasi, D. Barrera, J. Madrigal, S. Sales, S. Misra, IEEE Sens J 19, 5878 (2019)

    Article  ADS  Google Scholar 

  21. T. Li, C. Shi, Y. Tan, and Z. Zhou, IEEE Sens J 17, (2017).

Download references

Acknowledgements

This work was supported by the Key Project of Beijing Municipal Education Commission Science and Technology Program (No. KZ201911232044), the Beijing Nova Program of Science and Technology (No. Z191100001119052), the National Key Research and Development Program of China (No. 2020YFA0711200) and the National Natural Science Foundation of China (No. 52275517).

Funding

Funding was provided by the Key Project of Beijing Municipal Education Commission Science and Technology Program (No. KZ201911232044), the Beijing Nova Program of Science and Technology (No. Z191100001119052), the National Key Research and Development Program of China (No. 2020YFA0711200) and the National Natural Science Foundation of China (No. 52275517).

Author information

Authors and Affiliations

Authors

Contributions

Investigation, K.Z; Methodology, K.Z., G.S.; Writing - original draft, K.Z; Supervision, L.Z.; Writing – review & editing, G.S, Y.H, and L.Z.; Software, K.Z. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Lianqing Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., Zhu, L., Sun, G. et al. FBG-based 3D shape sensor based on spun multi-core fibre for continuum surgical robots. Appl. Phys. B 129, 140 (2023). https://doi.org/10.1007/s00340-023-08082-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08082-z

Navigation