Skip to main content
Log in

Spatiotemporal evaluation of plasma parameters and assessment of LTE during LIBS analysis of a zinc-based alloy

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In the present contribution, a spectroscopic investigation is used to study a plasma generated by fundamental radiation from a Q-switched Nd:YAG laser focused onto a zinc-based alloy. The quantification using calibration-free laser-induced breakdown spectroscopy (CF-LIBS) relies on the assumption of local thermodynamic equilibrium (LTE). The main objectives of this research are to investigate the spatial and temporal evolution of plasma parameters (Te, Ne) and assess the fulfillment of LTE conditions within specific regions. For an accurate plasma parameters estimation, only delay times ranging from 0.8 to 6 µs and for axial distances from 0.6 to 2.6 mm were chosen. Under these conditions, spectra were characterized by atomic and ionic emissions. Plasma temperature values were determined using the Saha–Boltzmann method applied to neutral and singly ionized copper lines, while the electron number density was calculated using the Stark broadened profile of the Hα line, according to the Gigosos relation. The LTE condition was warranted using the McWhirter criterion as long as two other conditions, which take into account the transient and heterogeneous nature of the plasma. CF-LIBS quantification was carried out under optimized spatiotemporal conditions and was compared with micro-X-ray fluorescence measurements. The relative error values of CF-LIBS quantification indicate an acceptable precision of our preliminary results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Zhang, T. Zhang, H. Li, Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring. Spectrochim. Acta Part B At. Spectrosc. 181, 106218 (2021)

    Article  Google Scholar 

  2. L.J. Radziemski, From LASER to LIBS, the path of technology development. Spectrochim. Acta Part B At. Spectrosc. 57(7), 1109–1113 (2002)

    Article  ADS  Google Scholar 

  3. A.K. Knight, N.L. Scherbarth, D.A. Cremers, M.J. Ferris, Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration. Appl. Spectrosc. 54(3), 331–340 (2000)

    Article  ADS  Google Scholar 

  4. E. Mal, R. Junjuri, M.K. Gundawar, A. Khare, Optimization of temporal window for application of calibration free-laser induced breakdown spectroscopy (CF-LIBS) on copper alloys in air employing a single line. J. Anal. At. Spectrom. 34(2), 319–330 (2019)

    Article  Google Scholar 

  5. A. Giakoumaki, K. Melessanaki, D. Anglos, Laser-induced breakdown spectroscopy (LIBS) in archaeological science—applications and prospects. Anal. Bioanal. Chem. 387(3), 749–760 (2007)

    Article  Google Scholar 

  6. D. Anglos, V. Detalle, Cultural Heritage Applications of LIBS, in Laser-Induced Breakdown Spectroscopy, vol. 182, ed. by S. Musazzi, U. Perini (Springer, Berlin, Heidelberg, 2014). https://doi.org/10.1007/978-3-642-45085-3_20

    Chapter  Google Scholar 

  7. S.J. Rehse, H. Salimnia, A.W. Miziolek, Laser-induced breakdown spectroscopy (LIBS): an overview of recent progress and future potential for biomedical applications. J. Med. Eng. Technol. 36(2), 77–89 (2012)

    Article  Google Scholar 

  8. R. Noll, C. Fricke-Begemann, S. Connemann, C. Meinhardt, V. Sturm, LIBS analyses for industrial applications—an overview of developments from 2014 to 2018. J. Anal. At. Spectrom. 33(6), 945–956 (2018)

    Article  Google Scholar 

  9. S. Messaoud Aberkane, M. Abdelhamid, F. Mokdad, K. Yahiaoui, S. Abdelli-Messaci, M.A. Harith, Sorting zamak alloys: via chemometric analysis of their LIBS spectra. Anal. Methods 9(24), 3696–3703 (2017). https://doi.org/10.1039/c7ay01138e

    Article  Google Scholar 

  10. J. Iqbal, T.A. Alrabdi, A. Fayyaz, H. Asghar, S.K.H. Shah, M. Naeem, Elemental study of Devarda’s alloy using calibration free-laser induced breakdown spectroscopy (CF-LIBS). Laser Phys (2023). https://doi.org/10.1088/1555-6611/acb593

    Article  Google Scholar 

  11. A. Kramida, Y. Ralchenko, J. Reader et al., NIST atomic spectra database (ver. 5.3) (2015).

  12. P.L. Smith, C. Heise, J.R. Esmond et al., Atomic spectral line database, built from atomic data files from RL Kurucz’CD-ROM 23 (2011)

  13. C. Aragón, J.A. Aguilera, Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods. Spectrochim. Acta Part B At. Spectrosc. 63(9), 893–916 (2008). https://doi.org/10.1016/j.sab.2008.05.010

    Article  ADS  Google Scholar 

  14. J.A. Aguilera, C. Aragón, Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions. Comparison of local and spatially integrated measurements. Spectrochim. Acta Part B At. Spectrosc. 59(12), 1861–1876 (2004). https://doi.org/10.1016/j.sab.2004.08.003

    Article  ADS  Google Scholar 

  15. X. Bai, Laser-induced plasma as a function of the laser. Thèse de doctorat. doctoral thesis, Université Claude Bernard-Lyon I (2015)

  16. R.K. Singh, O.W. Holland, J. Narayan, Theoretical model for deposition of superconducting thin films using pulsed laser evaporation technique. J. Appl. Phys. 68(1), 233–247 (1990). https://doi.org/10.1063/1.347123

    Article  ADS  Google Scholar 

  17. Z. Hou et al., A calibration-free model for laser-induced breakdown spectroscopy using non-gated detectors. Front. Phys. (2022). https://doi.org/10.1007/s11467-022-1195-9

    Article  Google Scholar 

  18. P.T. Rumsby, J.W.M. Paul, Temperature and density of an expanding laser produced plasma. Plasma Phys. 16(3), 247–260 (1974). https://doi.org/10.1088/0032-1028/16/3/002

    Article  ADS  Google Scholar 

  19. S.S. Harilal, C.V. Bindhu, R.C. Issac, V.P.N. Nampoori, C.P.G. Vallabhan, Electron density and temperature measurements in a laser produced carbon plasma. J. Appl. Phys. 82(5), 2140–2146 (1997). https://doi.org/10.1063/1.366276

    Article  ADS  Google Scholar 

  20. A.M. El Sherbini, H. Hegazy, T.M. El Sherbini, Measurement of electron density utilizing the Hα-line from laser produced plasma in air. Spectrochim. Acta Part B At. Spectrosc. 61(5), 532–539 (2006). https://doi.org/10.1016/j.sab.2006.03.014

    Article  ADS  Google Scholar 

  21. A.M. el Sherbini, A.M. Aboulfotouh, C.G. Parigger, Electron number density measurements using laser-induced breakdown spectroscopy of ionized nitrogen spectral lines. Spectrochim. Acta Part B At. Spectrosc. 125, 152–158 (2016). https://doi.org/10.1016/j.sab.2016.10.003

    Article  ADS  Google Scholar 

  22. C. Moreno-Díaz, A. Alonso-Medina, C. Colón, J.A. Porro, J.L. Ocaña, Measurement of plasma electron density generated in an experiment of Laser Shock Processing, utilizing the Hα-line. J. Mater. Process. Technol. 232, 9–18 (2016). https://doi.org/10.1016/j.jmatprotec.2016.01.026

    Article  Google Scholar 

  23. K.A. Ahmed, K.A. Aadim, R.S. Mohammed, Investigation the energy influence and excitation wavelength on spectral characteristics of laser induced MgZn plasma. AIP Conf. Proc. (2021). https://doi.org/10.1063/5.0065374

    Article  Google Scholar 

  24. M.A. Gigosos, M.Á. González, V. Cardeñoso, Computer simulated Balmer-alpha, -beta and -gamma Stark line profiles for non-equilibrium plasmas diagnostics. Spectrochim. Acta Part B At. Spectrosc. 58(8), 1489–1504 (2003). https://doi.org/10.1016/S0584-8547(03)00097-1

    Article  ADS  Google Scholar 

  25. H.R. Griem, Spectral Line Broadening by Plasmas (Academic Press, New York, 1974)

    Google Scholar 

  26. D.W. Hahn, N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma–particle interactions: still-challenging issues within the analytical plasma community. Appl. Spectrosc. 64(12), 335A-366A (2010)

    Article  ADS  Google Scholar 

  27. T. Fujimoto, R.W.P. McWhirter, Validity criteria for local thermodynamic equilibrium in plasma spectroscopy. Phys. Rev. A 42(11), 6588 (1990)

    Article  ADS  Google Scholar 

  28. G. Cristoforetti et al., Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion. Spectrochim. Acta Part B At. Spectrosc. 65(1), 86–95 (2010). https://doi.org/10.1016/j.sab.2009.11.005

    Article  ADS  Google Scholar 

  29. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, E. Tognoni, New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl. Spectrosc. 53(8), 960–964 (1999)

    Article  ADS  Google Scholar 

  30. E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, Calibration-free laser-induced breakdown spectroscopy: state of the art. Spectrochim. Acta Part B At. Spectrosc. 65(1), 1–14 (2010). https://doi.org/10.1016/j.sab.2009.11.006

    Article  ADS  Google Scholar 

  31. W.T. Chan, R.E. Russo, Study of laser-material interactions using inductively coupled plasma-atomic emission spectrometry. Spectrochim. Acta Part B At. Spectrosc. 46(11), 1471–1486 (1991)

    Article  ADS  Google Scholar 

  32. I.A. Urbina Medina, D.D. Carneiro, S. Rocha, E.E. Farias, F.O. Bredice, V. Palleschi, Branching ratio method for assessing optically thin conditions in laser-induced plasmas. Appl. Spectrosc. 75(7), 774–780 (2021)

    Article  ADS  Google Scholar 

Download references

Funding

Funding was provided by Direction Générale de la Recherche Scientifique et du Développement Technologique (Grant no. 491).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SMA; methodology, NL, KY, AK, SMA; data curation, NL, KY, SMA; writing—review and editing, NL, KY, AK, SMA.

Corresponding author

Correspondence to Sabrina Messaoud Aberkane.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lellouche, N., Yahiaoui, K., Kellou, A. et al. Spatiotemporal evaluation of plasma parameters and assessment of LTE during LIBS analysis of a zinc-based alloy. Appl. Phys. B 129, 136 (2023). https://doi.org/10.1007/s00340-023-08079-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08079-8

Navigation