Skip to main content
Log in

Effects of base and quantum wells widths variations on technical characteristics of tunneling injection transistor laser

  • Review
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we use an analytical model to investigate the optoelectronic characteristics of a double quantum well vertical cavity tunneling injection transistor laser. We particularly study device performances as a function of different tunneling probabilities as well as device structural factors including base width and quantum well location. Different confinement structures are analyzed to achieve higher optoelectronic figure of merits. The tunneling injection is denoted by a factor of ‘f,’ and it is varied between zero to one. By changing ‘f,’ modulation bandwidth and current gain which are the foremost features of transistor lasers are increased, while the threshold current is decreased. We have studied two various tunneling injection-based structures. Slipping the quantum well(s) toward the emitter improves the optical bandwidth to a maximum of 28.5 GHz, while the current gain \(\left( \beta \right)\) decreases, so there is a trade-off between the optical and electrical properties of transistor laser. Our analysis of these structures anticipates a profound reduction of 45% in the threshold current compared to the previously reported results, while the modulation bandwidth is kept constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The results presented in this paper are not publicly available at this time but maybe obtain from the corresponding author under reasonable request.

References

  1. J. Katz, Aluminum gallium arsenide optoelectronic devices for optical communications, Doctoral dissertation, California Institute of Technology (1981).

  2. N. Holonyak, M. Feng, The transistor laser. IEEE Spectr. 43(2), 50–55 (2006). https://doi.org/10.1109/MSPEC.2006.1584362

    Article  Google Scholar 

  3. H. Kaatuzian, Photonics, 2 (Amirkabir University Press, Tehran, 2020). (5th printings)

    Google Scholar 

  4. H.W. Then, M. Feng, N. Holonyak, The transistor laser: theory and experiment. Proc. IEEE 101, 2271 (2013). https://doi.org/10.1109/JPROC.2013.2274935

    Article  Google Scholar 

  5. H. Dae-Seob, L.V. Asryan, Tunneling-injection of electrons and holes into quantum dots: A tool for high-power lasing. Appl. Phys. Lett. 92, 251113 (2008). https://doi.org/10.1063/1.2952488

    Article  ADS  Google Scholar 

  6. I. Taghavi, H. Kaatuzian, J.P. Leburton, Bandwidth enhancement and optical performances of multiple quantum well transistor lasers. Appl. Phys. Lett. 100, 231114 (2012). https://doi.org/10.1063/1.4727898

    Article  ADS  Google Scholar 

  7. Y. Xiang, C. Reuterskiöld-Hedlund, X. Yu, C. Yang, T. Zabel, M. Hammer, M.N. Akram, Efficient CW dual-wavelength and passively Q-switched Tm: LuAG lasers. IEEE Photon. Technol. Lett. 27, 7 (2015). https://doi.org/10.1109/LPT.2014.2357800

    Article  Google Scholar 

  8. M. Wu, M. Feng, N. Holonyak, Surface emission vertical cavity transistor laser. Appl. Phys. Lett. (2012). https://doi.org/10.1109/LPT.2012.2203356

    Article  Google Scholar 

  9. M. Liu, M.K. Wu, M. Feng, N. Holonyak, Lateral feeding design and selective oxidation process in vertical cavity transistor laser. J. Appl. Phys. 114, 163104 (2013). https://doi.org/10.1063/1.4827855

    Article  ADS  Google Scholar 

  10. M. Nadeem Akram, Y. Xiang, X. Yu, T. Zabel, M. Hammar, Influence of base region thickness on the performance of Pnp transistor-VCSEL. Opt. Express 22, 27398 (2014). https://doi.org/10.1364/OE.22.027398

    Article  ADS  Google Scholar 

  11. B. Faraji, W. Shi, D.L. Pulfrey, L. Chrostowski, Analytical modeling of the transistor laser. IEEE J. Select. Top. Quant. Electron. 15, 594 (2009). https://doi.org/10.1109/JSTQE.2009.2013178

    Article  ADS  Google Scholar 

  12. M. Hosseini, H. Kaatuzian, I. Taghavi, Graded index separate confinement heterostructure transistor laser: analysis of various confinement structures. Chin. Opt. Lett. 15, 062501 (2017)

    Article  ADS  Google Scholar 

  13. Y. Xiang, X. Yu, J. Berggren, T. Zabel, M. Hammar, M.N. Akram, Minority current distribution in InGaAs/GaAs transistor-vertical-cavity surface-emitting laser. Appl. Phys. Lett 102, 191101 (2013). https://doi.org/10.1063/1.4803175

    Article  ADS  Google Scholar 

  14. M. Kucharczyk, M.S. Wartak, P. Weetman, Theoretical modeling of multiple quantum well lasers with tunneling injection and tunneling transport between quantum wells. J. Appl. Phys 86, 3218 (1999). https://doi.org/10.1063/1.371193

    Article  ADS  Google Scholar 

  15. B. Faraji, W. Shi, D.L. Pulfrey, L. Chrostowski, Analytical modeling of the transistor laser. IEEE J. Sel. Top. Quant. Electron. 15(3), 594–603 (2009). https://doi.org/10.1109/JSTQE.2009.2013178

    Article  ADS  Google Scholar 

  16. P. Bhattacharya, J. Singh, H. Yoon, X. Zhang, A. Gutierrez-Aitken, Y. Lam, Tunneling injection lasers: a new class of lasers with reduced hot carrier effects. IEEE J. Quant. Electron. 32, 1620 (1996). https://doi.org/10.1109/3.535367

    Article  ADS  Google Scholar 

  17. F. Capasso, R.A. Kiehl, Resonant tunneling transistor with quantum well base and high-energy injection: a new negative differential resistance device. Appl. Phys. Lett 58, 3 (1985). https://doi.org/10.1063/1.336109

    Article  Google Scholar 

  18. N. Kumar, B. Mukhopadhyay, R. Basu, Tunnel injection transistor laser for optical interconnects. Opt. Quant. Electron. 50, 160 (2018). https://doi.org/10.1007/s11082-018

    Article  Google Scholar 

  19. M. Feng, N. Holonyak Jr., H.W. Then, C.H. Wu, G. Walter, Tunnel junction transistor laser. Appl. Phys. Lett 94, 4 (2009). https://doi.org/10.1063/1.3077020

    Article  Google Scholar 

  20. J. Kaur, R. Basu, A.K. Sharma, Effect of separate confinement hetero-structure layer on tunnel injection transistor laser-based transmitter for high-speed optical communication networks. Opt. Laser Technol. 115, 268 (2019). https://doi.org/10.1016/j.optlastec.2019.02.038

    Article  ADS  Google Scholar 

  21. Y. Li, J.P. Leburton, Base transport factor and frequency response of transistor lasers. Appl. Phys. Lett 126, 15 (2019). https://doi.org/10.1063/1.5099041

    Article  Google Scholar 

  22. S. Piramasubramanian, M. Ganesh Madhan, V. Radha, S.M.S. Shajithaparveen, G. Nivetha, Effect of quantum well position on the distortion characteristics of transistor laser. Opt. Commun. 414, 22 (2018). https://doi.org/10.1016/j.optcom.2017.12.055

    Article  ADS  Google Scholar 

  23. H.C. Sun, L. Davis, S. Sethi, J. Singh, P. Bhattacharya, Properties of a tunneling injection quantum-well laser: recipe for “cold” device with a large modulation bandwidth. IEEE Photon. Technol. Lett. 5, 8 (1993). https://doi.org/10.1109/68.238238

    Article  Google Scholar 

  24. X. Zhang, Y. Yuan, A. Gutierrez-Aitken, P. Bhattacharya, GaAs-based multiple quantum well tunneling injection lasers. Appl. Phys. Lett. 69, 2309 (1996). https://doi.org/10.1063/1.117507

    Article  ADS  Google Scholar 

  25. M. Feng, Wu. Cheng-Han, M.K. Wu, Wu. Chao-Hsin, N. Holonyak, Resonance-free optical response of a vertical cavity transistor laser. Appl. Phys. Lett. 111, 121106 (2017). https://doi.org/10.1063/1.5004133

    Article  ADS  Google Scholar 

  26. I. Taghavi, H. Kaatuzian, J. Leburton, Performance optimization of multiple quantum well transistor laser. IEEE J. Quant. Electron. 49, 426 (2013). https://doi.org/10.1109/JQE.2013.2250488

    Article  ADS  Google Scholar 

  27. P. Weetman, M.S. Wartuk, P. Rusek, Comparison of classical and tunneling injection schemes in quantum-well lasers. IEEE Photon. Technol. Lett. 10, 648 (1998). https://doi.org/10.1109/68.669227

    Article  ADS  Google Scholar 

  28. B. Namvar, M. Hosseini, H. Kaatuzian, Design of high-performance double quantum well vertical cavity transistor lasers with GRIN base region. Appl. Phys. B (2019). https://doi.org/10.1007/s00340-019-7322-9

    Article  Google Scholar 

  29. S.V. Vinodhini, S. Piramasubramanian, Effect of tunneling probability on the distortion characteristics of tunnel injection transistor laser. Opt. Commun. 460, 125127 (2020). https://doi.org/10.1016/j.optcom.2019.125127

    Article  Google Scholar 

  30. R. Nagarajan, M. Ishikawa, T. Fukushima, R.S. Geels, J.E. Bowers, High speed quantum-well lasers and carrier transport effects. IEEE J. Quantum Electron. 28, 1990–2008 (1992). https://doi.org/10.1109/3.159508

    Article  ADS  Google Scholar 

  31. I. Taghavi, B. Namvar, M. Hosseini, H. Kaatuzian, Large signal analysis of multiple quantum well transistor laser: Investigation of imbalanced carrier and photon density distribution. Journal of Applied physics 127(13), 133102 (2020). https://doi.org/10.48550/arXiv.1805.05410. (AIP Publishing LLC)

    Article  ADS  Google Scholar 

  32. H.R. Mojaver, H. Kaatuzian, Analysis and improvement of optical frequency response in a long wavelength transistor laser. Opt. Quant. Electron. 44, 45–54 (2012). https://doi.org/10.1007/s11082-011-9531-2

    Article  Google Scholar 

  33. H. Kaatuzian, I. Taghavi, M. Danayee, Dependence of Transistor Laser optical frequency response on quantum-well position. In: 2008 International Conference on Recent Advances in Microwave Theory and Applications, Jaipur, India, pp. 406–409 (2008). https://doi.org/10.1109/AMTA.2008.4763127.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Gh. Nourbakhsh, H. Kaatuzian, and B. Namvar wrote the main manuscript text. Gh. Nourbakhsh and B. Namvar prepared the figures and tables. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ghazaleh Nourbakhsh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nourbakhsh, G., Kaatuzian, H. & Namvar, B. Effects of base and quantum wells widths variations on technical characteristics of tunneling injection transistor laser. Appl. Phys. B 129, 132 (2023). https://doi.org/10.1007/s00340-023-08076-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08076-x

Navigation