Skip to main content
Log in

A comparative study of classification models for laser-induced breakdown spectroscopy of Astragalus origin

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, laser-induced breakdown spectroscopy (LIBS) combined with machine learning algorithm was used to study the classification of Astragalus from 10 different origins. First, the spectrum of Astragalus from 10 different origins was collected based on LIBS technology, and support vector machine (SVM) and extreme learning machine (ELM) models were established, respectively. Their accuracy rates were 45% and 30%, respectively. After that, the feature variables were selected as the input vectors of SVM and ELM models using random forest (RF) feature importance ranking, and random forest-support vector machine (RF-SVM) and random forest-extreme learning machine (RF-ELM) models were established, respectively. Their accuracy rates were 83.33% and 58.33%, respectively. To improve classification accuracy, gray wolf optimizer (GWO) algorithm was used to optimize RF-SVM and RF-ELM, respectively, and two classification models of gray wolf optimizer-random forest-support vector machine (GWO-RF-SVM) and gray wolf optimizer-random forest-extreme learning machine (GWO-RF-ELM) were constructed. The accuracy rates of GWO-RF-SVM and GWO-RF-ELM models were 85% and 92%, respectively. The results show that the classification effect of GWO-RF-ELM is the best, and its macro-precision, macro-recall and macro-F1 score were 92%, 100%, 92.04% and 95.86%, respectively. It provides an effective method for the identification of Astragalus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are available upon request.

References

  1. H. Zhang, S.S. Ren, P. Yan, Phytotaxa 524, 199–204 (2021)

    Article  Google Scholar 

  2. A.O. Affum, D.O. Shiloh, D. Adomako, Food Chem. Toxicol. 56, 131–135 (2013)

    Article  Google Scholar 

  3. M.H. Shahrajabian, Appl. Ecol. Environ. Res. 17, 13355–13369 (2019)

    Google Scholar 

  4. M.S. Amiri, M.R. Joharchi, M. Nadaf, Y. Nasseh, Avicenna J. Phytomed. 10, 128–142 (2020)

    Google Scholar 

  5. J.J. Zhang, Y.M. Lin, X.H. Wei, Z.Y. Li, R.R. Li, J. AOAC Int. 105, 603–611 (2022)

    Article  Google Scholar 

  6. L.Q. Hu, C.L. Yin, S. Ma, Z.M. Liu, Acta. A Mol. Biomol. 205, 207–213 (2018)

    Article  Google Scholar 

  7. H. Sun, Q. Jin, Q.X. Wang, C. Shao, L.L. Zhang, Y.M. Guan, H.L. Tian, M.H. Li, Y.Y. Zhang, Ecol. Indic. 114, 106296 (2020)

    Article  Google Scholar 

  8. S. Li, S.K. Dong, Y.S. Fu, B.R. Zhou, S.L. Liu, H. Shen, Y.D. Xu, X.X. Gao, J.N. Xiao, S.N. Wu, F. Li, Sci. Total Environ. 844, 157141 (2022)

    Article  ADS  Google Scholar 

  9. X.Q. Ma, Q. Shi, J.A. Duan, T.T.X. Dong, K.W.K. Tsim, J. Agric. Food Chem. 50, 4861–4866 (2002)

    Article  Google Scholar 

  10. X.D. Yuan, K.H. Ling, C.W. Keung, Phytochem. Anal. 20, 293–297 (2009)

    Article  Google Scholar 

  11. V. Adimcilar, Z. Kalaycioglu, N. Aydogdu, T. Dirmenci, A. Kahraman, F.B. Erim, J. Pharm. Biomed. Anal. 175, 112763 (2019)

    Article  Google Scholar 

  12. A. Przybylska, M. Gackowski, M. Koba, Molecules 26, 2135 (2021)

    Article  Google Scholar 

  13. S. Abid, A. Maciuk, R. Fishmeister, V. Leblais, A. Legssyer, H. Mekhfi, A. Ziyyat, M. Aziz, A. Lekchiri, M. Bnouham, J. Chromatogr. Sci. 61, 66–73 (2022)

    Article  Google Scholar 

  14. H. Singh, N. Singh, Indian J. Pharm. Educ. Res. 56, 207–214 (2022)

    Article  Google Scholar 

  15. Y. Wang, M.G. Li, T. Feng, T.L. Zhang, Y.Q. Feng, H. Li, Chin. J. Anal. Chem. 50, 100057 (2022)

    Article  Google Scholar 

  16. X.S. Liu, S.Y. Zhang, H.F. Ni, W. Xiao, J. Wang, Y.R. Li, Y.J. Wu, Acta A Mol. Biomol. 218, 33–39 (2019)

    Article  ADS  Google Scholar 

  17. L.B. Guo, D. Zhang, L.X. Sun, S.C. Yao, L. Zhang, Z.Z. Wang, Q.Q. Wang, H.B. Ding, Y. Lu, Z.Y. Hou, Z. Wang, Front. Phys. 16, 22500 (2021)

    Article  ADS  Google Scholar 

  18. Z.H. Yang, J. Ren, M.Y. Du, Y.R. Zhao, K.Q. Yu, Sensors 22, 5679 (2022)

    Article  ADS  Google Scholar 

  19. Y. Ding, G.Y. Xia, H.W. Ji, X. Xiong, Anal. Methods 11, 3657–3664 (2019)

    Article  Google Scholar 

  20. Y. Ding, W. Zhang, X.Q. Zhao, L.W. Zhang, F. Yan, J. Anal. At. Spectrom. 35, 1131–1138 (2020)

    Article  Google Scholar 

  21. F. Deng, Y. Ding, Y.J. Chen, S.N. Zhu, Plasma Sci. Technol. 22, 074005 (2020)

    Article  ADS  Google Scholar 

  22. Y.H. Jiang, J. Kang, Y.R. Wang, Y.Q. Chen, R.H. Li, Appl. Spectrosc. 73, 1284–1291 (2019)

    Google Scholar 

  23. G.B. Jin, Z.C. Wu, Z.C. Ling, C.Q. Liu, W. Liu, W.X. Chen, L. Zhang, Remote Sens. 14, 3960 (2022)

    Article  ADS  Google Scholar 

  24. D. Zhang, J.F. Nie, X.C. Niu, F. Chen, Z.L. Hu, X.L. Wen, Y.Q. Li, L.B. Guo, Food Chem. 386, 132763 (2022)

    Article  Google Scholar 

  25. Y. Ding, J. Chen, W.J. Chen, Y.F. Wang, L.Y. Yang, Z. Wei, J. Anal. At. Spectrom. 38, 464–471 (2023)

    Article  Google Scholar 

  26. X.N. Liu, Q. Zhang, Z.S. Wu, X.Y. Shi, N. Zhao, Y.J. Qiao, Sensors 15, 642–655 (2015)

    Article  ADS  Google Scholar 

  27. J.M. Wang, S.W. Xue, P.C. Zheng, Y.Y. Chen, R. Peng, Anal. Lett. 50, 2000–2011 (2017)

    Article  Google Scholar 

  28. J.M. Wang, X.Y. Liao, P.C. Zheng, S.W. Xue, R. Peng, Anal. Lett. 51, 575–586 (2018)

    Article  Google Scholar 

  29. J. Liang, C.H. Yan, Y. Zhang, T.L. Zhang, X.H. Zheng, H. Li, Chemom. Intell. Lab. Syst. 197, 103930 (2020)

    Article  Google Scholar 

  30. K.X. Zheng, X.L. Li, S.Z. Song, X. Gao, Microw. Opt. Technol. Lett. 65, 1248–1254 (2022)

    Article  Google Scholar 

  31. D.X. Zhang, H. Zhang, Y. Zhao, Y.L. Chen, C. Ke, T. Xu, Y. He, Appl. Spectrosc. Rev. 57, 89–111 (2020)

    Article  ADS  Google Scholar 

  32. V.K. Chauhan, K. Dahiya, A. Sharma, Artif. Intell. Rev. 52, 803–855 (2019)

    Article  Google Scholar 

  33. S. Gupta, K. Deep, Eng. Comput. 36, 1777–1800 (2020)

    Article  Google Scholar 

  34. P. Wang, N. Li, C.H. Yan, Y.Z. Feng, Y. Ding, T.L. Zhang, H. Li, Anal. Methods 11, 3419–3428 (2019)

    Article  Google Scholar 

  35. Z. Wang, Teh. Vjesn. 30, 623–633 (2023)

    Google Scholar 

  36. K.D. Cole, P. DeRose, H.J. He, E.V. Stein, B. Lang, J. Schiel, A. Urbas, E. Solis, S. Choquette, Biopharm Int. 31, 22–34 (2018)

    Google Scholar 

Download references

Acknowledgements

The research is funded by National Natural Science Foundation of China (No. 62105160).

Author information

Authors and Affiliations

Authors

Contributions

YD contributed to conceptualization, methodology, investigation, writing—original draft, review, and editing; AH contributed to methodology, data analysis, review, and editing; JC contributed to conceptualization; MZ contributed to methodology; YS contributed to investigation; WC contributed to review; YW contributed to editing, and LY contributed to data analysis.

Corresponding author

Correspondence to Yu Ding.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Hu, A., Chen, J. et al. A comparative study of classification models for laser-induced breakdown spectroscopy of Astragalus origin. Appl. Phys. B 129, 125 (2023). https://doi.org/10.1007/s00340-023-08074-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08074-z

Navigation