Skip to main content
Log in

Self-consistency equations in axicon-based thin-disk laser resonators

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper presents a detailed investigation of the Bessel–Gauss mode in an axicon-based thin-disk resonator utilizing the self-consistency equations. The results show that Bessel–Gauss modes are eigenmodes of it even if the active medium is deformed. Then, both the numerical and the analytical results are consistent. The effects of the active medium deformation and the radius of curvature of the output mirror on the resonator’s behavior have been investigated. In addition, the self-consistency equations have been derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No data were generated or analyzed in the presented research.

References

  1. J. Durnin, J.J. Miceli, J.H. Eberly, Diffraction-free beams. Phys. Rev. Lett. 58, 1499–1501 (1987)

    ADS  Google Scholar 

  2. M. Goutsoulas, D. Bongiovanni, D. Li, Z. Chen, N.K. Efremidis, Tunable self-similar Bessel-like beams of arbitrary order. Opt. Lett. 45(7), 1830–1833 (2020)

    ADS  Google Scholar 

  3. L. Stoyanov, Y. Zhang, A. Dreischuh, G.G. Paulus, Long-range quasi-non-diffracting Gauss–Bessel beams in a few-cycle laser field. Opt. Express 29(7), 10997–11008 (2021)

    ADS  Google Scholar 

  4. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, K. Dholakia, Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 419(6903), 145–147 (2002)

    ADS  Google Scholar 

  5. D.G. Grier, A revolution in optical manipulation. Nature 424(6950), 810–816 (2003)

    ADS  Google Scholar 

  6. G. Zhang, R. Stoian, W. Zhao, G. Cheng, Femtosecond laser Bessel beam welding of transparent to non-transparent materials with large focal-position tolerant zone. Opt. Express 26(2), 917–926 (2018)

    ADS  Google Scholar 

  7. W. Wang, G. Wang, J. Ma, L. Cheng, B.-O. Guan, Miniature all-fiber axicon probe with extended Bessel focus for optical coherence tomography. Opt. Express 27(2), 358–366 (2019)

    ADS  Google Scholar 

  8. N. Mphuthi, L. Gailele, I. Litvin, A. Dudley, R. Botha, A. Forbes, Free-space optical communication link with shape-invariant orbital angular momentum Bessel beams. Appl. Opt. 58(16), 4258–4264 (2019)

    ADS  Google Scholar 

  9. T. Auguste, O. Gobert, B. Carré, Numerical study on high-order harmonic generation by a Bessel–Gauss laser beam. Phys. Rev. A 78(3), 033411 (2008)

    ADS  Google Scholar 

  10. S. Kumar, A. Parola, P. Di Trapani, O. Jedrkiewicz, Laser plasma wakefield acceleration gain enhancement by means of accelerating Bessel pulses. Appl. Phys. B 123(6), 1–7 (2017)

    ADS  Google Scholar 

  11. G. Scott, N. McArdle, Efficient generation of nearly diffraction-free beams using an axicon. Opt. Eng. 31(12), 2640–2643 (1992)

    ADS  Google Scholar 

  12. Z.L. Horváth, M. Erdélyi, G. Szabó, Z. Bor, F.K. Tittel, J.R. Cavallaro, Generation of nearly nondiffracting Bessel beams with a Fabry-Perot interferometer. J. Opt. Soc. Am. A 14(11), 3009–3013 (1997)

    ADS  Google Scholar 

  13. W.X. Cong, N.X. Chen, B.Y. Gu, Generation of nondiffracting beams by diffractive phase elements. J. Opt. Soc. Am. A 15(9), 2362–2364 (1998)

    ADS  Google Scholar 

  14. J. Turunen, A. Vasara, A.T. Friberg, Holographic generation of diffraction-free beams. Appl. Opt. 27(19), 3959–3962 (1988)

    ADS  Google Scholar 

  15. A.J. Cox, D.C. Dibble, Holographic reproduction of a diffraction-free beam. Appl. Opt. 30(11), 1330–1332 (1991)

    ADS  Google Scholar 

  16. R. Bowman, N. Muller, X. Zambrana-Puyalto, O. Jedrkiewicz, P. Di Trapani, M.J. Padgett, Efficient generation of Bessel beam arrays by means of an SLM. Eur. Phys. J. Spec. Top. 199(1), 159–166 (2011)

    Google Scholar 

  17. P. Boucher, J.D. Hoyo, C. Billet, O. Pinel, G. Labroille, F. Courvoisier, Generation of high conical angle Bessel–Gauss beams with reflective axicons. Appl. Opt. 57(23), 6725–6728 (2018)

    ADS  Google Scholar 

  18. N.A. Khilo, E.S. Petrova, A.A. Ryzhevich, Transformation of the order of Bessel beams in uniaxial crystals. Quant. Electron. 31(1), 85–89 (2001)

    ADS  Google Scholar 

  19. P. Muys, E. Vandamme, Direct generation of Bessel beams. Appl. Opt. 41(30), 6375–6379 (2002)

    ADS  Google Scholar 

  20. D. Naidoo, K. Aït-Ameur, M. Brunel, A. Forbes, Intra-cavity generation of superpositions of Laguerre–Gaussian beams. Appl. Phys. B 106(3), 683–690 (2012)

    ADS  Google Scholar 

  21. S. Ngcobo, I. Litvin, L. Burger, A. Forbes, A digital laser for on-demand laser modes. Nat. Commun. 4(1), 2289 (2013)

    ADS  Google Scholar 

  22. F. Wu, Y. Chen, D. Guo, Nanosecond pulsed Bessel-gauss beam generated directly from a nd:yag axicon-based resonator. Appl. Opt. 46(22), 4943–4947 (2007)

    ADS  Google Scholar 

  23. K. Uehara, H. Kikuchi, Generation of nearly diffraction-free laser beams. Appl. Phys. B 48(2), 125–129 (1989)

    ADS  Google Scholar 

  24. D. McGloin, K. Dholakia, Bessel beams: diffraction in a new light. Contemp. Phys. 46(1), 15–28 (2005)

    ADS  Google Scholar 

  25. J.K. Jabczynski, A "diffraction-free " resonator. Opt. Commun. 77(4), 292–294 (1990)

    ADS  Google Scholar 

  26. P. Pääkkönen, J. Turunen, Resonators with Bessel–Gauss modes. Opt. Commun. 156(4), 359–366 (1998)

    ADS  Google Scholar 

  27. J. Rogel-Salazar, G.H.C. New, S. ChÁvez-Cerda, Bessel–Gauss beam optical resonator. Opt. Commun. 190(1), 117–122 (2001)

    ADS  Google Scholar 

  28. A. Hakola, T. Hakkarainen, R. Tommila, T. Kajava, Energetic Bessel–Gauss pulses from diode-pumped solid-state lasers. J. Opt. Soc. Am. B 27(11), 2342–2349 (2010)

    ADS  Google Scholar 

  29. A.N. Khilo, E.G. Katranji, A.A. Ryzhevich, Axicon-based Bessel resonator: analytical description and experiment. J. Opt. Soc. Am. A 18(8), 1986–1992 (2001)

    ADS  Google Scholar 

  30. J.C. Guti’errez-Vega, R. Rodr’iguez-Masegosa, S. Chávez-Cerda, Bessel–Gauss resonator with spherical output mirror: geometrical- and wave-optics analysis. J. Opt. Soc. Am. A 20(11), 2113–2122 (2003). https://doi.org/10.1364/JOSAA.20.002113

    Article  ADS  Google Scholar 

  31. C.L. Tsangaris, G.H.C. New, J. Rogel-Salazar, Unstable Bessel beam resonator. Opt. Commun. 223(4), 233–238 (2003)

    ADS  Google Scholar 

  32. R.I. Hernández-Aranda, S. Chávez-Cerda, J.C. Gutiérrez-Vega, Theory of the unstable Bessel resonator. J. Opt. Soc. Am. A 22(9), 1909–1917 (2005)

    ADS  Google Scholar 

  33. A.S. Rao, G.K. Samanta, On-axis intensity modulation-free, segmented, zero-order Bessel beams with tunable ranges. Opt. Lett. 43(13), 3029–3032 (2018)

    ADS  Google Scholar 

  34. B. Singh, V.V. Subramaniam, S.R. Daultabad, A. Chakraborty, Axicon based conical resonators with high power copper vapor laser. Rev. Sci. Instrum. 81(7), 073110 (2010)

    ADS  Google Scholar 

  35. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, Scalable concept for diode-pumped high-power solid-state lasers. Appl. Phys. B 58(5), 365–372 (1994)

    ADS  Google Scholar 

  36. A. Voss, M. Abdou-Ahmed, C. Neugebauer, A. Giesen, T. Graf, in Schuácker, D. (ed.) XVI International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, vol. 6346 (SPIE, International Society for Optics and Photonics, 2007), pp. 536–547

  37. R. Pereira, B. Weichelt, D. Liang, P.J. Morais, H. Gouveia, M. Abdou-Ahmed, A. Voss, T. Graf, Efficient pump beam shaping for high-power thin-disk laser systems. Appl. Opt. 49(27), 5157–5162 (2010)

    ADS  Google Scholar 

  38. Y.H. Peng, Y.X. Lim, J. Cheng, Y. Guo, Y.Y. Cheah, K.S. Lai, Near fundamental mode 1.1 kW Yb:YAG thin-disk laser. Opt. Lett. 38(10), 1709–1711 (2013)

    ADS  Google Scholar 

  39. C. Vorholt, U. Wittrock, Intra-cavity pumped Yb:YAG thin-disk laser with 1.74% quantum defect. Opt. Lett. 40(20), 4819–4822 (2015)

    ADS  Google Scholar 

  40. S. Nagel, B. Metzger, T. Gottwald, V., Kuhn, A. Killi, S.-S. Schad, in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (Optica Publishing Group, 2019), p. 5

  41. S. Nagel, B. Metzger, D. Bauer, J. Dominik, T. Gottwald, V. Kuhn, A. Killi, T. Dekorsy, S.-S. Schad, Thin-disk laser system operating above 10 kw at near fundamental mode beam quality. Opt. Lett. 46(5), 965–968 (2021)

    ADS  Google Scholar 

  42. A. Giesen, in CLEO: Science and Innovations (Optica Publishing Group, 2013), p. 1

  43. T. Gottwald, V. Kuhn, S.-S. Schad, C. Stolzenburg, A. Killi, Recent developments in high power thin disk lasers at trumpf laser. Technologies for Optical Countermeasures X; and High-Power Lasers 2013: Technology and Systems vol. 8898 (2013), pp. 187–193

  44. J. Dominik, M. Scharun, B. Dannecker, S. Nagel, T. Dekorsy, D. Bauer, in Advanced Solid State Lasers (Optica Publishing Group, 2021), pp. 2–6

  45. R. Aghbolaghi, S. Batebi, J. Sabaghzadeh, Thin-disk laser with Bessel-like output beam: theory and simulations. Appl. Opt. 52(4), 683–689 (2013)

    ADS  Google Scholar 

  46. V. Belyi, A. Forbes, N. Kazak, N. Khilo, P. Ropot, Bessel-like beams with z-dependent cone angles. Opt. Express 18(3), 1966–1973 (2010)

    ADS  Google Scholar 

  47. I.A. Litvin, N.A. Khilo, A. Forbes, V.N. Belyi, Intra-cavity generation of Bessel-like beams with longitudinally dependent cone angles. Opt. Express 18(5), 4701–4708 (2010)

    ADS  Google Scholar 

  48. J. Li, Y. Wu, Y. Li, in Advances in Imaging and Electron Physics, vol. 164 (Elsevier, 2010), pp. 257–302

  49. P. Nie, D. Jia, C. Du, H. Zhang, T. Xu, T. Liu, Method based on fast fourier transform for calculating conical refraction of beams with noncircular symmetry. IEEE Photon. J. 9(2), 1–7 (2017)

    Google Scholar 

  50. J. Li, J. Zhu, Z. Peng, The s-fft calculation of Collins formula and its application in digital holography. Eur. Phys. J. D 45, 325–330 (2007)

    ADS  Google Scholar 

  51. Y. Lou, J. Li, Y. Zhang, J. Gui, C. Li, Z. Fan, in Holography, Diffractive Optics, and Applications IV, vol. 7848 (SPIE, 2010), pp. 346–354

  52. R. Aghbolaghi, H.S. Charehjaloo, V. Fallahi, Simulation of near ideal-Bessel beam generation by a thin-disk laser configuration. JOSA B 39(4), 1186–1194 (2022)

    ADS  Google Scholar 

  53. P. Vaity, L. Rusch, Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett. 40(4), 597–600 (2015)

    ADS  Google Scholar 

  54. G.B. Arfken, H.J. Weber, Mathematical methods for physicists. Am. Assoc. Phys. Teachers (1999)

  55. J.P. de Leon, Revisiting the orthogonality of Bessel functions of the first kind on an infinite interval. Eur. J. Phys. 36(1), 015016 (2014)

    MATH  Google Scholar 

  56. N.M. Temme, Special Functions: An Introduction to the Classical Functions of Mathematical Physics (John Wiley & Sons, New Jersey, 1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HSC wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Reza Aghbolaghi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghbolaghi, R., Sahebghoran Charehjaloo, H. & Fallahi, V. Self-consistency equations in axicon-based thin-disk laser resonators. Appl. Phys. B 129, 131 (2023). https://doi.org/10.1007/s00340-023-08070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08070-3

Navigation