Skip to main content
Log in

Unfolding frequency and spatial multimode through parametric amplified cascade four-mode process

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a theoretical and experimental investigation of four quantum correlated beams’ properties generated through the parametrically amplified cascaded four-wave-mixing (PA-CFWM) process in rubidium vapor. The research explores the signal excitation efficiency of different energy levels by scanning the probe detuning and identifies three different ways to light up the cascade four-mode process. Specially, two pairs of Einstein Podolsky Rosen (EPR) entangled light fields can be generated, leading to a quantum correlation between two previously uncorrelated signals. In addition, the multimode characteristics of output signals are observed in the frequency and spatial domain, and the number of frequency multimode and spatial multimode can be controlled through dressing effect. In our system, the number of spatial modes in four entangled beams can reach up to 1200. Further, the line shift of the PA-CFWM signal resonant frequency can be controlled by experimental parameters, such as the detuning and power of the dressing field. These results are important not only for fundamental tests of quantum effects but also for their numerous applications in quantum technologies, such as quantum imaging and quantum metrology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. C. Monroe, Nature 416, 238 (2002)

    Article  ADS  Google Scholar 

  2. N. Treps, U. Andersen, B. Buchler, P.K. Lam, A. Maitre, H.-A. Bachor, C. Fabre, Phys. Rev. Lett. 88, 203601 (2002)

    Article  ADS  Google Scholar 

  3. M. Bourennane, M. Eibl, S. Gaertner, C. Kurtsiefer, A. Cabello, H. Weinfurter, Phys. Rev. Lett. 92, 107901 (2004)

    Article  ADS  Google Scholar 

  4. H. Hübel, D.R. Hamel, A. Fedrizzi, S. Ramelow, K.J. Resch, T. Jennewein, Nature 466, 601–603 (2010)

    Article  ADS  Google Scholar 

  5. G. Brida, M. Genovese, A. Meda, I.R. Berchera, Phys. Rev. A 83, 033811 (2011)

    Article  ADS  Google Scholar 

  6. P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko, Y. Shih, Phys. Rev. Lett. 75, 4337 (1995)

    Article  ADS  Google Scholar 

  7. X. Jia, Z. Yan, Z. Duan, X. Su, H. Wang, C. Xie, K. Peng, Phys. Rev. Lett. 109, 253604 (2012)

    Article  ADS  Google Scholar 

  8. Y.P. Zhang, Z.Q. Nie, H.B. Zheng, C.B. Li, J.P. Song, M. Xiao, Phys. Rev. A 80, 013835 (2009)

    Article  ADS  Google Scholar 

  9. J.K. Thompson, J. Simom, H. Loh, V. Vuletić, Science 313, 74 (2006)

    Article  ADS  Google Scholar 

  10. R.C. Pooser, A.M. Marino, V. Boyer, K.M. Jones, P.D. Lett, Phys. Rev. Lett. 103, 010501 (2009)

    Article  ADS  Google Scholar 

  11. S. Du, J. Wen, M.H. Rubin, G.Y. Yin, Four-wave mixing and biphoton generation in a two-level system. Phys. Rev. Lett. 98, 5053601 (2007)

    Article  ADS  Google Scholar 

  12. D.R. Hamel, L.K. Shalm, H. Hübel, A.J. Miller, F. Marsili, V.B. Verma, R.P. Mirin, S.W. Nam, K.J. Resch, T. Jennewein, Nat. Photonics 8, 801 (2014)

    Article  ADS  Google Scholar 

  13. D. Ding, W. Zhang, S. Shi, Z. Zhou, L.I. Yan, B. Shi, G. Guo, Optica 2, 642 (2015)

    Article  ADS  Google Scholar 

  14. J. Wen, E. Oh, S. Du, J. Opt. Soc. Am. B 27, 000A11 (2010)

    Article  ADS  Google Scholar 

  15. Z.Q. Nie, H.B. Zheng, P.Z. Li, Y.M. Yang, Y.P. Zhang, M. Xiao, Phys. Rev. A 77, 063829 (2008)

    Article  ADS  Google Scholar 

  16. Z.Y. Zhang, F. Wen, J.L. Che, D. Zhang, C.B. Li, Y.P. Zhang, M. Xiao, Sci. Rep. 5, 15058 (2015)

    Article  ADS  Google Scholar 

  17. V. Boyer, A.M. Marino, R.C. Pooser, P.D. Lett, Chem. Phys. Chem. 10, 755–760 (2009)

    Article  Google Scholar 

  18. N. Corzo, A.M. Marino, K.M. Jones, P.D. Lett, Opt. Express. 19, 21358–21369 (2011)

    Article  ADS  Google Scholar 

  19. Z. Qin, J. Jing, J. Zhou, C.J. Liu, R. Pooser, Z.F. Zhou, W.P. Zhang, Opt. Lett. 37, 3141–3143 (2012)

    Article  ADS  Google Scholar 

  20. V. Boyer, A.M. Marino, R.C. Pooser, P.D. Lett, Science 321, 544 (2008)

    Article  ADS  Google Scholar 

  21. Z. Qin, L. Cao, H. Wang, A.M. Marino, W. Zhang, J. Jing, Phys. Rev. Lett. 113, 023602 (2014)

    Article  ADS  Google Scholar 

  22. E.M. Knutson, J.D. Swaim, S. Wyllie, R.T. Glasser, Phys. Rev. A 98, 013828 (2018)

    Article  ADS  Google Scholar 

  23. H. Wang, C. Fabre, J. Jing, Phys. Rev. A 95, 051802 (2017)

    Article  ADS  Google Scholar 

  24. S. Liu, H. Wang, J. Jing, Phys. Rev. A 97, 043846 (2018)

    Article  ADS  Google Scholar 

  25. F. Devaux, E. Lantz, Eur. Phys. J. D. 8, 117–124 (2000)

    Article  ADS  Google Scholar 

  26. N.V. Corzo, A.M. Marino, K.M. Jones, P.D. Lett, Phys. Rev. Lett. 109, 043602 (2012)

    Article  ADS  Google Scholar 

  27. D.Y. Zhu, Y.H. Yang, D. Zhang, R.Z. Liu, D.M. Ma, C.B. Li, Y.P. Zhang, Sci. Rep. 7, 43689 (2017)

    Article  ADS  Google Scholar 

  28. X.H. Li, J. Wu, S. Xiong, M. Chen, H. Yan, Z.G. Wang, Y.P. Zhang, Photon. Res. 7, 1454–1460 (2019)

    Article  Google Scholar 

  29. Y.P. Zhang, C.C. Zuo, H.B. Zheng, C.B. Li, Z.Q. Nie, J.P. Song, H. Chang, M. Xiao, Phys. Rev. A 80, 055804 (2009)

    Article  ADS  Google Scholar 

  30. E.A. Rojas-González, A. Borne, B. Boulanger, J.A. Levenson, K. Bencheikh, Phys. Rev. Lett. 120, 043601 (2018)

    Article  ADS  Google Scholar 

  31. Y. Zhang, H. Wang, X.Y. Li, J.T. Jing, C.D. Xie, K.C. Peng, Phys. Rev. A 62, 023813 (2000)

    Article  ADS  Google Scholar 

  32. C.B. Li, Y.F. Li, W. Li, K.K. Li, Y.L. Liu, Y. Cai, Y.P. Zhang, New J. Phys. 24, 093022 (2022)

    Article  ADS  Google Scholar 

  33. H. Hübel, D.R. Hamel, A. Fedrizzi, S. Ramelow, K.J. Resch, T. Jennewein, Nature 466, 7306 (2010)

    Article  Google Scholar 

  34. Y. Feng, K.K. Li, A. Irfan, Y.M. Li, W. Li, G.C. Lan, Y.P. Zhang, Annalen. Phys. 531, 1900072 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFA0303700, 2018YFA0307500), Key Scientific and Technological Innovation Team of Shaanxi Province (2021TD-56), National Natural Science Foundation of China (61975159, 12174302, 62022066, 12074306, 12074303).

Author information

Authors and Affiliations

Authors

Contributions

Jiajia Wei and Yufeng Li: wrote the main manuscript text and prepared figures 1-8. Binshuo Luo: Validation, Formal analysis. Jiaxuan Wei: Validation, Formal analysis. Haitian Tang: Validation, Formal analysis. Zhou Feng: Funding acquisition, Data curation. Changbiao Li: Conceptualization, Methodology. Yanpeng Zhang: Conceptualization, Methodology. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Changbiao Li or Yanpeng Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Li, Y., Luo, B. et al. Unfolding frequency and spatial multimode through parametric amplified cascade four-mode process. Appl. Phys. B 129, 123 (2023). https://doi.org/10.1007/s00340-023-08067-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08067-y

Navigation