Skip to main content
Log in

Tunable dual-band dual-polarization terahertz polarization converter and coding metasurfaces based on Weyl semimetals

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this work, the tunable dual-band split ring terahertz (THz) polarization converter is proposed based on Weyl semimetals (WSMs). By changing the chemical potential of the WSMs, the polarization converter can realize the frequency-dependent linear–linear and circular–circular cross-polarization conversion in the two bands of 1.21–1.29 THz and 1.97–2.04 THz, respectively. The achieved polarization converter ratio (PCR) is higher than 99% for the two types of cross polarizations. Besides, the WSM-based polarization conversion also shows 2π phase shift and amplitude modulation by rotating the azimuth angles of the split ring. Furthermore, the 3-bit coding metasurfaces can achieve tunable linear–linear, circular–circular, and linear–circular beam modulation by adjusting the chemical potential of the WSMs. The proposed tunable metasurface would have wide applications in multiband cross-polarizations and different types of wave modulation with linear–linear, circular–circular, and linear–circular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. D. Serghiou, M. Khalily, T.W.C. Brown, R. Tafazolli, IEEE Commun. Surv. Tutor. (2022). https://doi.org/10.1109/COMST.2022.3205505

    Article  Google Scholar 

  2. S. Zanotto, G. Biasiol, P.V. Santos, A. Pitanti, Nat. Commun. 13, 5939 (2022)

    Article  ADS  Google Scholar 

  3. P. Fei, G.A.E. Vandenbosch, W. Guo, X. Wen, D. Xiong, W. Hu, Q. Zheng, X. Chen, Adv. Optical Mater. 8, 2000194 (2020)

    Article  Google Scholar 

  4. Y. Cheng, J. Wang, Diam. Relat. Mater. 119, 108559 (2021)

    Article  ADS  Google Scholar 

  5. Y.-Y. Ji, F. Fan, X.-H. Wang, S.-J. Chang, Opt. Express 26, 12852 (2018)

    Article  ADS  Google Scholar 

  6. Z.K. Liu, J. Jiang, B. Zhou, Z.J. Wang, Y. Zhang, H.M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z.X. Shen, D.L. Feng, Z. Hussain, Y.L. Chen, Nat. Mater. 13, 677 (2014)

    Article  ADS  Google Scholar 

  7. Y.-F. Wu, L. Zhang, C.-Z. Li, Z.-S. Zhang, S. Liu, Z.-M. Liao, D. Yu, Adv. Mater. 30, 1707547 (2018)

    Article  Google Scholar 

  8. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146, 351 (2008)

    Article  ADS  Google Scholar 

  9. T. Liang, Q. Gibson, M.N. Ali, M. Liu, R.J. Cava, N.P. Ong, Nat. Mater. 14, 280 (2015)

    Article  ADS  Google Scholar 

  10. L. Dai, Y. Zhang, H. Zhang, J.F. O’Hara, Appl. Phys. Express 12, 075003 (2019)

    Article  ADS  Google Scholar 

  11. L. Dai, Y. Zhang, X. Guo, Y. Zhao, S. Liu, H. Zhang, Opt. Mater. Express 8, 3238 (2018)

    Article  ADS  Google Scholar 

  12. X. Sun, Z. Qu, J. Yuan, Q. Wang, Photonics Nanostruct. Fundam. Appl. 50, 101012 (2022)

    Article  Google Scholar 

  13. L. Aggarwal, S. Gayen, S. Das, R. Kumar, V. Süß, C. Felser, C. Shekhar, G. Sheet, Nat. Commun. 8, 13974 (2017)

    Article  ADS  Google Scholar 

  14. Y. Li, Y. Zhou, Z. Guo, F. Han, X. Chen, P. Lu, X. Wang, C. An, Y. Zhou, J. Xing, G. Du, X. Zhu, H. Yang, J. Sun, Z. Yang, W. Yang, H.-K. Mao, Y. Zhang, H.-H. Wen, Npj Quant. Mater. 2, 66 (2017)

    Article  ADS  Google Scholar 

  15. B.Q. Lv, H.M. Weng, B.B. Fu, X.P. Wang, H. Miao, J. Ma, P. Richard, X.C. Huang, L.X. Zhao, G.F. Chen, Z. Fang, X. Dai, T. Qian, H. Ding, Phys. Rev. X 5, 031013 (2015)

    Google Scholar 

  16. S.-Y. Xu, I. Belopolski, D.S. Sanchez, C. Zhang, G. Chang, C. Guo, G. Bian, Z. Yuan, H. Lu, T.-R. Chang, P.P. Shibayev, M.L. Prokopovych, N. Alidoust, H. Zheng, C.-C. Lee, S.-M. Huang, R. Sankar, F. Chou, C.-H. Hsu, H.-T. Jeng, A. Bansil, T. Neupert, V.N. Strocov, H. Lin, S. Jia, M.Z. Hasan, Sci. Adv. 1, e1501092 (2015)

    Article  ADS  Google Scholar 

  17. J. Zhang, F.-L. Liu, J.-K. Dong, Y. Xu, N.-N. Li, W.-G. Yang, S.-Y. Li, Chin. Phys. Lett. 32, 097102 (2015)

    Article  ADS  Google Scholar 

  18. J. Gooth, A.C. Niemann, T. Meng, A.G. Grushin, K. Landsteiner, B. Gotsmann, F. Menges, M. Schmidt, C. Shekhar, V. Süß, R. Hühne, B. Rellinghaus, C. Felser, B. Yan, K. Nielsch, Nature 547, 324 (2017)

    Article  ADS  Google Scholar 

  19. M. Chinotti, A. Pal, W.J. Ren, C. Petrovic, L. Degiorgi, Phys. Rev. B 94, 245101 (2016)

    Article  ADS  Google Scholar 

  20. B. Xu, Y.M. Dai, L.X. Zhao, K. Wang, R. Yang, W. Zhang, J.Y. Liu, H. Xiao, G.F. Chen, A.J. Taylor, D.A. Yarotski, R.P. Prasankumar, X.G. Qiu, Phys. Rev. B 93, 121110 (2016)

    Article  ADS  Google Scholar 

  21. E. Haubold, K. Koepernik, D. Efremov, S. Khim, A. Fedorov, Y. Kushnirenko, J. van den Brink, S. Wurmehl, B. Büchner, T.K. Kim, M. Hoesch, K. Sumida, K. Taguchi, T. Yoshikawa, A. Kimura, T. Okuda, S.V. Borisenko, Phys. Rev. B 95, 241108 (2017)

    Article  ADS  Google Scholar 

  22. R. Zhang, B. You, S. Wang, K. Han, X. Shen, W. Wang, Opt. Express 29, 24804 (2021)

    Article  ADS  Google Scholar 

  23. D. Chen, J. Yang, J. Huang, W. Bai, J. Zhang, Z. Zhang, S. Xu, W. Xie, Carbon 154, 350 (2019)

    Article  Google Scholar 

  24. X. Jiang, D. Chen, Z. Zhang, J. Huang, K. Wen, J. He, J. Yang, Opt. Express 28, 34079 (2020)

    Article  ADS  Google Scholar 

  25. K. Halterman, M. Alidoust, A. Zyuzin, Phys. Rev. B 98, 085109 (2018)

    Article  ADS  Google Scholar 

  26. G.-D. Liu, X. Zhai, H.-Y. Meng, Q. Lin, Y. Huang, C.-J. Zhao, L.-L. Wang, Opt. Express 26, 11471 (2018)

    Article  ADS  Google Scholar 

  27. F. Wang, S. Huang, L. Li, W. Chen, Z. Xie, Appl. Opt. 57, 6916 (2018)

    Article  ADS  Google Scholar 

  28. Y. Yuan, J. Cheng, X. Dong, F. Fan, X. Wang, S. Chang, Opt. Lasers Eng. 143, 106636 (2021)

    Article  Google Scholar 

  29. X.-L. Lv, B. Wu, Y.-T. Zhao, H.-R. Zu, W.-B. Lu, Appl. Phys. Express 13, 075007 (2020)

    Article  ADS  Google Scholar 

  30. J.-S. Li, F.-Q. Bai, Opt. Mater. Express 10, 1853 (2020)

    Article  ADS  Google Scholar 

  31. Y. Cheng, J. Fan, H. Luo, F. Chen, N. Feng, X. Mao, R. Gong, Opt. Mater. Express 9, 1365 (2019)

    Article  ADS  Google Scholar 

  32. X. Yuan, J. Chen, J. Wu, X. Yan, Y. Zhang, X. Zhang, Results Phys. 37, 105571 (2022)

    Article  Google Scholar 

  33. P. Das, K. Mandal, Optik 261, 169157 (2022)

    Article  ADS  Google Scholar 

  34. B. Chen, X. Wang, W. Li, C. Li, Z. Wang, H. Guo, J. Wu, K. Fan, C. Zhang, Y. He, B. Jin, J. Chen, P. Wu, Sci. Adv. 8, eadd1296 (2022)

    Article  Google Scholar 

  35. S.-D. Zhao, H.-W. Dong, X.-B. Miao, Y.-S. Wang, C. Zhang, Phys. Rev. Appl. 17, 034019 (2022)

    Article  ADS  Google Scholar 

  36. S.J. Li, B.W. Han, Z.Y. Li, X.B. Liu, G.S. Huang, R.Q. Li, X.Y. Cao, Opt. Express 30, 26362 (2022)

    Article  ADS  Google Scholar 

  37. M.Z. Chen, W. Tang, J.Y. Dai, J.C. Ke, L. Zhang, C. Zhang, J. Yang, L. Li, Q. Cheng, S. Jin, T.J. Cui, Natl. Sci. Rev. 9, nwab134 (2022)

    Article  Google Scholar 

  38. Q. Lin, H. Wong, L. Huitema, A. Crunteanu, Adv. Optical Mater. 10, 2101699 (2022)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China, (No. 62175016, 61875017, and 61976022).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YZ, HZ; Methodology: LD; Formal analysis and investigation: LQ; Writing—original draft preparation: LD; Writing—review and editing: LQ, FK, YY. All authors reviewed the manuscript.

Corresponding author

Correspondence to Limei Qi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1933 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Qi, L., Uqaili, J.A. et al. Tunable dual-band dual-polarization terahertz polarization converter and coding metasurfaces based on Weyl semimetals. Appl. Phys. B 129, 81 (2023). https://doi.org/10.1007/s00340-023-08026-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08026-7

Navigation