Skip to main content
Log in

Measurement of δ18O in water vapor using a tunable diode laser-based spectrometer

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

A Correction to this article was published on 12 June 2023

This article has been updated

Abstract

A gas detection system based on tunable diode laser absorption spectroscopy (TDLAS) was reported, which can be used for real-time, continuity, high-precision, and rapid time response measurement of the isotope ratio of 18O/16O in water vapor from 3729.8 cm−1 to 3730.8 cm−1. A detailed description of the system's implementation was provided and preliminary measurement precision was analyzed with a short path length sample cell (20.4 cm) after verification in the laboratory environment. Allan variance analytical method was used to evaluate the reliability of the developed laser spectroscopic isotope analysis system and the results showed that a precision of 5.274‰ was obtained for 18O/16O ratio at 1 s signal averaging time, which can be improved to 0.088‰ at the integration time of approximate 191 s. By combining with a long optical path absorption cell, the developed TDLAS isotope detection system provides great potential for determining the oxygen isotope composition of water vapor for various applications in environmental, geological, ecological, and energy fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. G.J. Bowen, Z. Cai, R.P. Fiorella, A.L. Putman, Annu. Rev. Earth Planet. Sci. 47, 453 (2019)

    Article  ADS  Google Scholar 

  2. X. Wu, F. Chen, X. Liu, S. Wang, M. Zhang, G. Zhu, X. Zhou, J. Chen, Water 13, 2374 (2021)

    Article  Google Scholar 

  3. R. van Geldern, J. Kuhlemann, R. Schiebel, H. Taubald, J.A.C. Barth, Isot. Environ. Health Stud. 50, 184 (2014)

    Article  Google Scholar 

  4. P.R. Lekshmy, M. Midhun, R. Ramesh, J. Hydrol. 563, 354 (2018)

    Article  ADS  Google Scholar 

  5. Z. Wei, K. Yoshimura, A. Okazaki, K. Ono, W. Kim, M. Yokoi, C.T. Lai, J. Hydrol. 533, 91 (2016)

    Article  ADS  Google Scholar 

  6. J.J. Gibson, T.W.D. Edwards, S.J. Birks, N.A. St Amour, W.M. Buhay, P. McEachern, B.B. Wolfe, D.L. Peters, Hydrol. Process. 19, 303 (2005)

    Article  ADS  Google Scholar 

  7. Z. Pang, Y. Kong, J. Li, J. Tian, Proced Earth Planet. Sci 17, 534 (2017)

    Article  ADS  Google Scholar 

  8. P. Schlosser, R. Bayer, G. Bönisch, L.W. Cooper, B. Ekwurzel, W.J. Jenkins, S. Khatiwala, S. Pfirman, W.M. Smethie, Sci. Total Environ. 237–238, 15 (1999)

    Article  ADS  Google Scholar 

  9. P. Gupta, D. Noone, J. Galewsky, C. Sweeney, B.H. Vaughn, Rapid Commun. Mass Spectrom. 23, 2534 (2009)

    Article  ADS  Google Scholar 

  10. E. Kerstel, L. Gianfrani, Appl. Phys. B 92, 439 (2008)

    Article  ADS  Google Scholar 

  11. S.D. Kelly, K.D. Heaton, P. Brereton, Rapid Commun. Mass Spectrom. 15, 1283 (2001)

    Article  ADS  Google Scholar 

  12. D. Paul, G. Skrzypek, Rapid Commun. Mass Spectrom. 20, 2033 (2006)

    Article  ADS  Google Scholar 

  13. W. Meier-Augenstein, H.F. Kemp, S.M.L. Hardie, Food Chem. 133, 1070 (2012)

    Article  Google Scholar 

  14. P. Sturm, A. Knohl, Atmos. Meas. Tech 3, 67 (2010)

    Article  Google Scholar 

  15. N. Kurita, B.D. Newman, L.J. Araguas-Araguas, P. Aggarwal, Atmos. Meas. Tech. 5, 2069 (2012)

    Article  Google Scholar 

  16. F. Aemisegger, P. Sturm, P. Graf, H. Sodemann, S. Pfahl, A. Knohl, H. Wernli, Atmos. Meas. Tech. 5, 1491 (2012)

    Article  Google Scholar 

  17. M.F. Nehemy, C. Millar, K. Janzen, M. Gaj, D.L. Pratt, C.P. Laroque, J.J. McDonnell, Rapid Commun. Mass Spectrom. 33, 1301 (2019)

    Article  ADS  Google Scholar 

  18. J. Liu, C. Xiao, M. Ding, J. Ren, J. Environ. Sci. 26, 2266 (2014)

    Article  Google Scholar 

  19. C.R. Pidgeon, M.J. Colles, Nature 279, 377 (1979)

    Article  ADS  Google Scholar 

  20. O.J. Maselli, D. Fritzsche, L. Layman, J.R. McConnell, H. Meyer, Isot. Environ. Health Stud. 49, 387 (2013)

    Article  Google Scholar 

  21. M. Gaj, M. Beyer, P. Koeniger, H. Wanke, J. Hamutoko, T. Himmelsbach, Hydrol. Earth Syst. Sci. 20, 715 (2016)

    Article  ADS  Google Scholar 

  22. J. Han, L. Tian, Z. Cai, W. Ren, W. Liu, J. Li, J. Tai, J. Hydrol. 608, 127672 (2022)

    Article  Google Scholar 

  23. S. Lin, J. Chang, J. Sun, P. Xu, Front. Phys. (2022). https://doi.org/10.3389/fphy.2022.853966

    Article  Google Scholar 

  24. C. Jiang, J. Zhang, Z. Xi, W. Ma, J. Li, Spectrochim. Acta Mol. Biomol. Spectrosc. 281, 121628 (2022)

    Article  Google Scholar 

  25. F. Xin, J. Li, J. Guo, D. Yang, Y. Wang, Q. Tang, Z. Liu, Sensors 21, 1722 (2021)

    Article  ADS  Google Scholar 

  26. G. Durry, J.S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, V. Zéninari, Appl. Phys. B 99, 339 (2010)

    Article  ADS  Google Scholar 

  27. P. Werle, R. Macke, F. Slemr, Appl Phys B Photophys Laser Chem 57, 131 (1993)

    Article  ADS  Google Scholar 

  28. R. Wada, Y. Matsumi, T. Nakayama, T. Hiyama, Y. Fujiyoshi, N. Kurita, K. Muramoto, S. Takanashi, N. Kodama, Y. Takahashi, Isot. Environ. Health Stud. 53, 646 (2017)

    Article  Google Scholar 

  29. X. Lee, S. Sargent, R. Smith, B. Tanner, J. Atmos. Oceanic Tech. 22, 555 (2005)

    Article  ADS  Google Scholar 

  30. X.-F. Wen, X.-M. Sun, S.-C. Zhang, G.-R. Yu, S.D. Sargent, X. Lee, J. Hydrol. 349, 489 (2008)

    Article  ADS  Google Scholar 

  31. I.E. Gordon, L.S. Rothman, R.J. Hargreaves, R. Hashemi, E.V. Karlovets, F.M. Skinner, E.K. Conway, C. Hill, R.V. Kochanov, Y. Tan, P. Wcisło, A.A. Finenko, K. Nelson, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, A. Coustenis, B.J. Drouin, J. Quant. Spectrosc. Radiat. Transfer 277, 107949 (2022)

    Article  Google Scholar 

  32. L. Galatry, Phys. Rev. 122, 1218 (1961)

    Article  ADS  Google Scholar 

  33. J.S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, V. Zeninari, J. Quant. Spectrosc. Radiat. Transfer 111, 2332 (2010)

    Article  ADS  Google Scholar 

  34. C.-M. Chou, R.-Y. Wang, Hydrol. Process. 18, 987 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financed by the National Natural Science Foundation of China (41875158 and 61675005), the Open Fund of Key Laboratory of Opto-electronic Information Technology, Ministry of Education of Tianjin University (2022KFKT011).

Author information

Authors and Affiliations

Authors

Contributions

Jian Zhang: Investigation, Methodology, Data curation, Formal analysis, Visualization, Writing-original draft. Junya Du: Data curation, Software, prepared figures 1-4 and table 1. Cong Jiang: Data curation, Software, prepared figures 5-8. Jingsong Li: Conceptualization, Methodology, Investigation, Writing-review & editing, Project administration, Funding acquisition. Tianbo He: Troubleshooting, Data assessment.

Corresponding author

Correspondence to Jingsong Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Du, J., Jiang, C. et al. Measurement of δ18O in water vapor using a tunable diode laser-based spectrometer. Appl. Phys. B 129, 80 (2023). https://doi.org/10.1007/s00340-023-08022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08022-x

Navigation