Skip to main content
Log in

Anti-relaxation coating-induced velocity-dependent population re-distribution in electromagnetically induced transparency

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In an uncoated vapor cell, transmission spectra obtained for electromagnetically induced transparency (EIT) for D\(_2\) line of \(^{87}\)Rb show asymmetry and (or) absorption in the presence of a magnetic field. In this study, complete conversion from asymmetry/absorption to transmission is found using octadecyltrichlorosilane (OTS) as an anti-relaxation coating for a \(\Lambda\) system. The experimental results were interpreted in terms of velocity-dependent population re-distribution in the ground states induced by the coating, eventually resulting in the conversion from absorption to transmission. A simple theoretical model based on density matrix formalism is presented for qualitative interpretation of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.J. Boller, A. Imamoğlu, S.E. Harris, Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66(20), 2593 (1991)

    Article  ADS  Google Scholar 

  2. D. Budker, M. Romalis, Optical magnetometry. Nat. Phys. 3(4), 227–234 (2007)

    Article  Google Scholar 

  3. W.C. Griffith, S. Knappe, J. Kitching, Femtotesla atomic magnetometry in a microfabricated vapor cell. Opt. Express 18(26), 27167–27172 (2010)

    Article  ADS  Google Scholar 

  4. R.M. Camacho, M.V. Pack, J.C. Howell, Slow light with large fractional delays by spectral hole-burning in rubidium vapor. Phys. Rev. A 74(3), 033,801 (2006)

    Article  Google Scholar 

  5. J.D. Siverns, J. Hannegan, Q. Quraishi, Demonstration of slow light in rubidium vapor using single photons from a trapped ion. Sci. Adv. 5(10), eaav4651 (2019)

    Article  ADS  Google Scholar 

  6. A.I. Lvovsky, B.C. Sanders, W. Tittel, Optical quantum memory. Nat. Photon. 3(12), 706–714 (2009)

    Article  ADS  Google Scholar 

  7. K. Reim, P. Michelberger, K. Lee, J. Nunn, N. Langford, I. Walmsley, Single-photon-level quantum memory at room temperature. Phys. Rev. Lett. 107(5), 053,603 (2011)

    Article  Google Scholar 

  8. S. Micalizio, A. Godone, F. Levi, J. Vanier, Spin-exchange frequency shift in alkali-metal-vapor cell frequency standards. Phys. Rev. A 73(3), 033,414 (2006)

    Article  Google Scholar 

  9. J. Kitching, S. Knappe, L. Hollberg, Miniature vapor-cell atomic-frequency references. Appl. Phys. Lett. 81(3), 553–555 (2002)

    Article  ADS  Google Scholar 

  10. A. Kumarakrishnan, U. Shim, S. Cahn, T. Sleator, Ground-state grating echoes from rb vapor at room temperature. Phys. Rev. A 58(5), 3868 (1998)

    Article  ADS  Google Scholar 

  11. P.K. Vudyasetu, R.M. Camacho, J.C. Howell, Storage and retrieval of multimode transverse images in hot atomic rubidium vapor. Phys. Rev. Lett. 100(12), 123,903 (2008)

    Article  Google Scholar 

  12. C. Shu, P. Chen, T.K.A. Chow, L. Zhu, Y. Xiao, M. Loy, S. Du, Subnatural-linewidth biphotons from a doppler-broadened hot atomic vapour cell. Nat. Commun. 7(1), 1–5 (2016)

    Article  Google Scholar 

  13. M. Erhard, H. Helm, Buffer-gas effects on dark resonances: theory and experiment. Phys. Rev. A 63(4), 043,813 (2001)

    Article  Google Scholar 

  14. S. Gozzini, P. Sartini, C. Gabbanini, A. Lucchesini, C. Marinelli, L. Moi, J. Xu, G. Alzetta, Experimental study of velocity changing collisions on coherent population trapping in sodium. Eur. Phys. J. D-Atom. Mol. Optic. Plasma Phys. 6(1), 127–131 (1999)

    Google Scholar 

  15. S. Seltzer, D. Michalak, M. Donaldson, M. Balabas, S. Barber, S. Bernasek, M.A. Bouchiat, A. Hexemer, A. Hibberd, D.J. Kimball et al., Investigation of antirelaxation coatings for alkali-metal vapor cells using surface science techniques. J. Chem. Phys. 133(14), 144,703 (2010)

    Article  Google Scholar 

  16. H. Cheng, H.M. Wang, S.S. Zhang, P.P. Xin, J. Luo, H.P. Liu, Electromagnetically induced transparency of 87rb in a buffer gas cell with magnetic field. J. Phys. B: At. Mol. Opt. Phys. 50(9), 095,401 (2017)

    Article  Google Scholar 

  17. Y. Xiao, Spectral line narrowing in electromagnetically induced transparency. Mod. Phys. Lett. B 23(05), 661–680 (2009)

    Article  ADS  Google Scholar 

  18. M. Klein, M. Hohensee, D. Phillips, R. Walsworth, Electromagnetically induced transparency in paraffin-coated vapor cells. Phys. Rev. A 83(1), 013,826 (2011)

    Article  Google Scholar 

  19. I.S. Radojičić, M. Radonjić, M.M. Lekić, Z.D. Grujić, D. Lukić, B. Jelenković, Raman-ramsey electromagnetically induced transparency in the configuration of counterpropagating pump and probe in vacuum rb cell. JOSA B 32(3), 426–430 (2015)

    Article  ADS  Google Scholar 

  20. I.H. Subba, R.K. Singh, N. Sharma, S. Chatterjee, A. Tripathi, Understanding asymmetry in electromagnetically induced transparency for 87rb in strong transverse magnetic field. Eur. Phys. J. D 74(7), 1–9 (2020)

    Article  Google Scholar 

  21. A. Sargsyan, D. Sarkisyan, Y. Pashayan-Leroy, C. Leroy, S. Cartaleva, A. Wilson-Gordon, M. Auzinsh, Electromagnetically induced transparency resonances inverted in magnetic field. J. Exp. Theor. Phys. 121(6), 966–975 (2015)

    Article  ADS  Google Scholar 

  22. R.K. Singh, N. Sharma, I.H. Subba, S. Chatterjee, A. Tripathi, Competition between off-resonant and on-resonant processes in electromagnetically induced transparency in presence of magnetic field. Phys. Lett. A 416, 127,673 (2021)

    Article  Google Scholar 

  23. R. Yahiaoui, M. Manjappa, Y.K. Srivastava, R. Singh, Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices. Appl. Phys. Lett. 111(2), 021,101 (2017)

    Article  Google Scholar 

  24. D. Brazhnikov, S. Ignatovich, A. Novokreshchenov, V. Vishnyakov, M. Skvortsov, in Quantum Information and Measurement (Optica Publishing Group, 2019), pp. T5A–78

  25. S. Mondal, S.S. Sahoo, A.K. Mohapatra, A. Bandyopadhyay, Formation of electromagnetically induced transparency and two-photon absorption in close and open multi-level ladder systems. Opt. Commun. 472, 126,036 (2020)

    Article  Google Scholar 

  26. M. Balabas, D. Budker, J. Kitching, P. Schwindt, J. Stalnaker, Magnetometry with millimeter-scale antirelaxation-coated alkali-metal vapor cells. JOSA B 23(6), 1001–1006 (2006)

    Article  ADS  Google Scholar 

  27. R. Li, F.N. Baynes, A.N. Luiten, C. Perrella, Continuous high-sensitivity and high-bandwidth atomic magnetometer. Phys. Rev. Appl. 14(6), 064,067 (2020)

    Article  Google Scholar 

  28. J. Guo, X. Feng, P. Yang, Z. Yu, L. Chen, C.H. Yuan, W. Zhang, High-performance Raman quantum memory with optimal control in room temperature atoms. Nat. Commun. 10(1), 148 (2019)

    Article  ADS  Google Scholar 

  29. S.M. Rochester, Modeling Nonlinear Magneto-Optical Effects in Atomic Vapors (University of California, Berkeley, 2010)

    Google Scholar 

  30. M. Bhattarai, V. Bharti, V. Natarajan, A. Sargsyan, D. Sarkisyan, Study of EIT resonances in an anti-relaxation coated RB vapor cell. Phys. Lett. A 383(1), 91–96 (2019)

    Article  ADS  Google Scholar 

  31. K. Nasyrov, S. Gozzini, A. Lucchesini, C. Marinelli, S. Gateva, S. Cartaleva, L. Marmugi, Antirelaxation coatings in coherent spectroscopy: theoretical investigation and experimental test. Phys. Rev. A 92(4), 043,803 (2015)

    Article  Google Scholar 

  32. A. Lazoudis, T. Kirova, E. Ahmed, P. Qi, J. Huennekens, A. Lyyra, Electromagnetically induced transparency in an open v-type molecular system. Phys. Rev. A 83(6), 063,419 (2011)

    Article  Google Scholar 

  33. I.H. Subba, A. Tripathi, Observation of electromagnetically induced absorption in 87rb d2 line in strong transverse magnetic field. J. Phys. B: At. Mol. Opt. Phys. 51(15), 155,001 (2018)

    Article  Google Scholar 

  34. O. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A. Sheremet, A. Bramati, D. Kupriyanov, J. Laurat, E. Giacobino, Electromagnetically induced transparency in an inhomogeneously broadened \(\lambda\) transition with multiple excited levels. Phys. Rev. A 83(5), 053,809 (2011)

    Article  Google Scholar 

  35. S. Chakrabarti, A. Pradhan, B. Ray, P.N. Ghosh, Velocity selective optical pumping effects and electromagnetically induced transparency for d2 transitions in rubidium. J. Phys. B: At. Mol. Opt. Phys. 38(23), 4321 (2005)

    Article  ADS  Google Scholar 

  36. E. Breschi, G. Kazakov, C. Schori, G. Di Domenico, G. Mileti, A. Litvinov, B. Matisov, Light effects in the atomic-motion-induced Ramsey narrowing of dark resonances in wall-coated cells. Phys. Rev. A 82(6), 063,810 (2010)

    Article  Google Scholar 

  37. I. Novikova, R.L. Walsworth, Y. Xiao, Electromagnetically induced transparency-based slow and stored light in warm atoms. Laser Photon. Rev. 6(3), 333–353 (2012)

    Article  ADS  Google Scholar 

  38. B. Luo, H. Tang, H. Guo, Dark states in electromagnetically induced transparency controlled by a microwave field. J. Phys. B: At. Mol. Opt. Phys. 42(23), 235,505 (2009)

    Article  Google Scholar 

  39. M. Auzinsh, D. Budker, S. Rochester, Optically Polarized Atoms: Understanding Light-Atom Interactions (Oxford University Press, 2010)

    MATH  Google Scholar 

Download references

Acknowledgements

RKS would like to thank the Department of Science and Technology, India (Grant No.: DST/INSPIRE Fellowship/2018/IF180421). NS and AT would like to thank the Department of Science and Technology, India (Grant No.: EMR/2016/006150). IHS would like to thank University Grants Commission (UGC), India, for Non-NET fellowship. S.C. would like to thank the Department of Science and Technology, India (Grant No: DST/INSPIRE/04/2015/002358), and Science & Engineering Research Board (SERB), India (Grant No: SB/SRS/2020-21/51/CS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Tripathi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A four-level system interacting with two lasers was taken as a model. Energy levels 1 and 2 are dipole forbidden (E\(_{1}\) E\(_{2}\)). A locked weak probe excites the transitions 1\(\rightarrow\)3 and 1\(\rightarrow\)4 simultaneously, while a strong pump scans the transitions 2\(\rightarrow\)3 and 2\(\rightarrow\)4. The excited states 3 and 4 have a frequency separation of \(\Delta\). The density matrix equations for the system were taken to be of the following form:

$$\begin{aligned} \dot{\rho _{11}}= & {} \frac{1}{2} i \Omega _ p (c_{13} \rho _{31}+c_{14} \rho _{41}-c_{31}\rho _{13}-c_{41} \rho _{14})\\{} & {} + \gamma _p \rho _{22} - (\gamma _a+\gamma _p) \rho _{11} +\Gamma (\rho _{33}+ \rho _{44}) \\ \dot{\rho _{12}}= & {} - \frac{1}{2} i [\Omega _ c (c_{32} \rho _{13}+c_{42} \rho _{14})-\Omega _p(c_{13}\rho _{32}\\{} & {} +c_{14} \rho _{42})- 2\delta \rho _{12}] - \frac{1}{2} (\gamma _p + \gamma _d) \rho _{12}\\ \dot{\rho _{13}}= & {} - \frac{1}{2} i [\Omega _ p (c_{13} \rho _{11} - c_{13} \rho _{33}- c_{14} \rho _{43})+\Omega _c c_{23}\rho _{12}\\{} & {} - 2(\delta _p- \Delta -k \text {v}) \rho _{13}] - \frac{1}{2} (2\Gamma +\gamma _p + \gamma _d) \rho _{13}\\ \dot{\rho _{14}}= & {} - \frac{1}{2} i [\Omega _ p (c_{14} \rho _{11} - c_{14} \rho _{44}- c_{13} \rho _{34})+\Omega _c c_{24}\rho _{12}\\{} & {} - 2(\delta _p-k \text {v}) \rho _{14}] - \frac{1}{2} (2\Gamma +\gamma _p + \gamma _d) \rho _{13}\\ \dot{\rho _{22}}= & {} \frac{1}{2} i \Omega _ c (c_{23} \rho _{32}+c_{24} \rho _{42}-c_{32}\rho _{23}-c_{42}\rho _{24})\\{} & {} - \gamma _p \rho _{22} + (\gamma _a+\gamma _p) \rho _{11} +\Gamma (\rho _{33}+\rho _{44})\\ \dot{\rho _{23}}= & {} - \frac{1}{2} i [\Omega _ c (c_{23} \rho _{22} - c_{23} \rho _{33}- c_{24} \rho _{43})+\Omega _p c_{13}\rho _{21}\\ {}{} & {} - 2(\delta _p-\Delta - k \text {v}-\delta ) \rho _{14}] - \frac{1}{2} (2\Gamma +\gamma _p + \gamma _d) \rho _{13}\\ \dot{\rho _{24}}= & {} - \frac{1}{2} i [\Omega _ c (c_{24} \rho _{22} - c_{24} \rho _{44}- c_{23} \rho _{34})+\Omega _p c_{14}\rho _{21}\\ {}{} & {} - 2(\delta _p- k \text {v}-\delta ) \rho _{14}] - \frac{1}{2} (2\Gamma +\gamma _p + \gamma _d) \rho _{13}\\ \dot{\rho _{33}}= & {} - \frac{1}{2} i [\Omega _ p (c_{13} \rho _{31} - c_{31} \rho _{13})+\Omega _c (c_{23}\rho _{32}\\ {}{} & {} -c_{32}\rho _{23})] - 2\Gamma \rho _{33}\\ \dot{\rho _{34}}= & {} - \frac{1}{2} i [\Omega _ p (c_{14} \rho _{31} - c_{31} \rho _{14})+\Omega _c (c_{24}\rho _{32}\\ {}{} & {} -c_{32}\rho _{24}+(2 (\delta _p+k \text {v})-\Delta )\rho _{34})]\\ \dot{\rho _{44}}= & {} - \frac{1}{2} i [\Omega _ p (c_{14} \rho _{41} - c_{41} \rho _{14})+\Omega _c (c_{24}\rho _{42}\\ {}{} & {} -c_{42}\rho _{24})] - 2\Gamma \rho _{44}, \end{aligned}$$

with \(\rho _{ij}=(\rho _{ji})^*\). In the equations, \(\delta _p\)=\(\omega _{44}-\omega _p\), \(\delta\)=\(\delta _p-\delta _c\), k v is the Doppler shift, and \(\gamma _d\) is the dephasing rate due to collisions (taken to be of the order of few Hz). It should be noted that the non-zero detuning in the probe beam with respect to the excited state where the excited states are within the Doppler width of the system is important for the re-distribution discussed in the article. Usually in a three-level system, two-photon absorption processes are resolved when the conditions \(\delta _p\) \(>>\) \(\Gamma\) and \(\Omega _c>>\Omega _p\) are satisfied. However, in four-level system, the condition \(\delta _p\) \(>>\) \(\Gamma\) is not a strict one due to the presence of the nearby excited state. It can be argued that if the Doppler shift of light makes some atoms near resonant with respect to the excited state (say 4), the same class of atoms may be far resonant to the other excited state (3). Hence every class of velocity except the ones which satisfy the condition \(\Vert \delta _p-k v\Vert \ll \Gamma\) can undergo two-photon absorption. If the frequency separation between the excited states is large as compared to the Doppler width, no such re-distribution can occur (for e.g., in D\(_1\) line of \(^{87}\)Rb).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Singh, R.K., Subba, I.H. et al. Anti-relaxation coating-induced velocity-dependent population re-distribution in electromagnetically induced transparency. Appl. Phys. B 129, 68 (2023). https://doi.org/10.1007/s00340-023-08016-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08016-9

Navigation