Skip to main content
Log in

Kinetics of the CuBr vapor active medium under non-typical excitation conditions

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We study a non-typical excitation mode of the copper bromide active medium using the kinetic model. The active medium is pumped by the pulse train and the laser generation is obtained in the subsequent single excitation pulse. Such mode allows one to obtain the laser generation pulse with the extended duration by increase in the pause duration after the pulse train. The relaxation processes during the pause are studied to explain such effect. It is shown that this operation mode can also be used to obtain the superradiance and amplification pulses of the extended duration that is of interest for active optical systems. Based on the comparison with the experimental results, new fundamental results are obtained regarding the copper bromide kinetics in the active medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. R.J. Carman, Modelling of the kinetics and parametric behaviour of a copper vapour laser: output power limitation issues. J. Appl. Phys. 82(1), 71–83 (1997). https://doi.org/10.1063/1.365851

    Article  ADS  Google Scholar 

  2. M.J. Kushner, B.E. Warner, Large-bore copper-vapor lasers: kinetics and scaling issues. J. Appl. Phys. 54(6), 2970–2982 (1983)

    Article  ADS  Google Scholar 

  3. M.J. Withford, D.J.W. Brown, R.P. Mildren, R.J. Carman, G.D. Marshall, J.A. Piper, Advances in copper laser technology: kinetic enhancement. Prog. Quantum Electron. 28(3–4), 165–196 (2004)

    Article  ADS  Google Scholar 

  4. A.M. Boichenko, G.S. Evtushenko, S.N. Torgaev, Simulation of a cubr laser. Laser Phys. 18(12), 1522–1525 (2008). https://doi.org/10.1134/S1054660X08120219

    Article  ADS  Google Scholar 

  5. N.K. Vuchkov, D.N. Astadjov, N.V. Sabotinov, Influence of the excitation circuits on the cubr laser performance. IEEE J. Quantum Electron. 30(3), 750–758 (1994). https://doi.org/10.1109/3.286163

    Article  ADS  Google Scholar 

  6. P.A. Bokhan, On pulse duration of self-terminating lasers. Quantum Electron. 41(2), 110–114 (2011). https://doi.org/10.1070/QE2011v041n02ABEH014355

    Article  ADS  Google Scholar 

  7. B.A. Ghani, M. Hammadi, Modeling the plasma kinetics mechanisms of cubr laser with neon-hydrogen additives. Opt. Laser Technol. 38(2), 67–76 (2006). https://doi.org/10.1016/j.optlastec.2004.11.008

    Article  ADS  Google Scholar 

  8. I.K. Kostadinov, K.A. Temelkov, D. Astadjov, S. Slaveeva, G.P. Yankov, N.V. Sabotinov, High-power copper bromide vapor laser. Opt. Commun. 501, 127363 (2021). https://doi.org/10.1016/j.optcom.2021.127363

    Article  Google Scholar 

  9. A.M. Boichenko, G.S. Evtushenko, V.O. Nekhoroshev, D.V. Shiyanov, S.N. Torgaev, Cubr-ne-hbr laser with a high repetition frequency of the lasing pulses at a reduced energy deposition in the discharge. Phys. Wave Phenom. 23(1), 1–13 (2015). https://doi.org/10.3103/S1541308X1501001X

    Article  ADS  Google Scholar 

  10. Singh, D.K., Dikshit, B., Vijayan, R., Mukherjee, J., Rawat, V.S.: Analysis of the discharge plasma impedance of copper vapor laser. Laser Physics 32(5) (2022). https://doi.org/10.1088/1555-6611/ac603b

  11. D. Singh, B. Dikshit, R. Vjayan, A. Gupta, J. Mukherjee, V. Rawat, Impedance stabilization by trigger modulation in copper vapor laser. Opt. Quantum Electron. 55, 81 (2022). https://doi.org/10.1007/s11082-022-04369-1

    Article  Google Scholar 

  12. S. Mohammadpour Lima, S. Behrouzinia, K. Khorasani, Amplifying characteristics of small-bore copper bromide lasers. Appl. Phys. B Lasers Opt. 125(6) (2019)

  13. V.M. Batenin, V.V. Buchanov, A. Boichenko, M.A. Kazaryan, I.I. Klimovskii, E.I. Molodykh, High-brightness. Met. Vapour Lasers. Phys. Fundam. Math. Models (2017). https://doi.org/10.1201/9781315372617

  14. Y.P. Polunin, N.A. Yudin, Control of the radiation parameters of a copper vapour laser. Quantum Electron. 33(9), 833–835 (2003). https://doi.org/10.1070/QE2003v033n09ABEH002508

    Article  ADS  Google Scholar 

  15. M.V. Trigub, V.V. Vlasov, S.N. Torgaev, G.S. Evtushenko, An image-brightness amplifier based on copper bromide vapor for operation at increased superradiance pulse duration. Tech. Phys. Lett. 43(9), 828–830 (2017). https://doi.org/10.1134/S1063785017090280

    Article  ADS  Google Scholar 

  16. M.V. Trigub, V.A. Dimaki, V.O. Troitskii, N.V. Karasev, Increase in the cubr laser pulse duration in the pulse train mode. Atmos. Ocean. Opt. 34(4), 357–361 (2021). https://doi.org/10.1134/S102485602104014X

    Article  Google Scholar 

  17. V.A. Dimaki, V.G. Sokovikov, S.N. Torgaev, M.V. Trigub, V.O. Troitskii, D.V. Shiyanov, Metal vapor lasers. Atmos. Ocean. Opt. 33(1), 69–79 (2020). https://doi.org/10.1134/S1024856020010066

    Article  Google Scholar 

  18. F.A. Gubarev, V.F. Fedorov, K.V. Fedorov, D.V. Shiyanov, G.S. Evtushenko, Copper bromide vapour laser with an output pulse duration of up to 320 ns. Quantum Electron. 46(1), 57–60 (2016). https://doi.org/10.1070/QE2016v046n01ABEH015707

    Article  ADS  Google Scholar 

  19. S.N. Torgaev, A.E. Kulagin, T.G. Evtushenko, G.S. Evtushenko, Kinetic modeling of spatio-temporal evolution of the gain in copper vapor active media. Opt. Commun. 440, 146–149 (2019)

    Article  ADS  Google Scholar 

  20. D.N. Astadjov, A.A. Isaev, G.G. Petrash, I.V. Ponomarev, N.V. Sabotinov, N.K. Vuchkov, Temporal and radial evolution of the populations of cui levels in the cubr vapor laser. IEEE J. Quantum Electron. 28(10), 1966–1969 (1992). https://doi.org/10.1109/3.159503

    Article  ADS  Google Scholar 

  21. E.B. Gordon, V.G. Egorov, V.S. Pavlenko, Excitation of metal vapor lasers by pulse trains. Sov. J. Quantum Electron. 8(2), 266–268 (1978). https://doi.org/10.1070/QE1978v008n02ABEH008543

    Article  ADS  Google Scholar 

  22. V.M. Batenin, A.M. Boychenko, V.V. Buchanov, M.A. Kazaryan, I.I. Klimovskii, E.I. Molodyh, Lasers on Self-Terminating Transitions in Metal Vapors, vol. 1 (Fizmatlit, Moscow, 2009), p.544. (in Russian)

    Google Scholar 

  23. K.V. Fedorov, M.V. Trigub, G.S. Evtushenko, Laser monitor for remote object visualization. In: 2015 International Siberian Conference on Control and Communications, SIBCON 2015—Proceedings (2015). https://doi.org/10.1109/SIBCON.2015.7147307

Download references

Acknowledgements

We are grateful to V.A. Dimaki for the help in power supply modification, as well as N.V. Karasev and V.O. Troitskii for the discussion and interest in the work.

Funding

The study of the kinetic process in the CuBr active medium was supported by Russian Science Foundation, project no. 19-79-10096-P. The part of the work in power supply modification was supported by Base Budget of IAO SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Trigub.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulagin, A., Trigub, M. Kinetics of the CuBr vapor active medium under non-typical excitation conditions. Appl. Phys. B 129, 67 (2023). https://doi.org/10.1007/s00340-023-08010-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08010-1

Navigation