Skip to main content
Log in

Clusters of rotating beams with autofocusing and transformation properties generated by a spatial light modulator

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We theoretically, numerically, and experimentally investigate new types of laser beams with autofocusing, rotating and/or transformation properties. A spatial light modulator generates these laser beams as clusters/sets of shifted vortex Laguerre-Gaussian beams and their superpositions with additional phase distribution. We demonstrate the formation of the clusters of rotating beams with controlled individual autofocusing trajectories as well as different transformations (topological/positional and interference redistribution) and rotation of the entire clusters as complex structures. Moreover, we investigate the possibility of astigmatic transformation of the propagating laser beams clusters. Thus, the proposed techniques provide additional control of the three-dimensional trajectories of the structured laser beams with predetermined intensity and phase distributions and can be used in laser manipulation, laser material processing, and optical microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. J.A. Neff, R.A. Athale, S.H. Lee, Two-dimensional spatial light modulators: a tutorial. Proc. IEEE 78(5), 826–855 (1990). https://doi.org/10.1109/5.53402

    Article  Google Scholar 

  2. J.P. Huignard, Spatial light modulators and their applications. J. Opt. 18(4), 181 (1987). https://doi.org/10.1088/0150-536X/18/4/003

    Article  ADS  Google Scholar 

  3. Z. Kuang, W. Perrie, J. Leach, M. Sharp, S.P. Edwardson, M. Padgett, G. Dearden, K.G. Watkins, High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator. Appl. Surf. Sci. 255(5:1), 2284–2289 (2008). https://doi.org/10.1016/j.apsusc.2008.07.091

    Article  ADS  Google Scholar 

  4. J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, B. Xu, J. Li, D. Wu, J. Chu, Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci. Appl. 6(7), e17011 (2017). https://doi.org/10.1038/lsa.2017.11

    Article  ADS  Google Scholar 

  5. P.S. Salter, M.J. Booth, Adaptive optics in laser processing. Light Sci. Appl. 8, 110 (2019). https://doi.org/10.1038/s41377-019-0215-1

    Article  ADS  Google Scholar 

  6. A.P. Porfirev, S.N. Khonina, N.A. Ivliev, A. Meshalkin, E.A. Achimova, A. Forbes, Writing and reading with the longitudinal component of light using carbazole-containing azopolymer thin films. Sci. Rep. 12, 3477 (2022). https://doi.org/10.1038/s41598-022-07440-9

    Article  ADS  Google Scholar 

  7. J. Liesener, M. Reicherter, T. Haist, H.J. Tiziani, Multi-functional optical tweezers using computer-generated holograms. Opt. Commun. 185(1–3), 77–82 (2000). https://doi.org/10.1016/S0030-4018(00)00990-1

    Article  ADS  Google Scholar 

  8. M. Woerdemann, C. Alpmann, M. Esseling, C. Denz, Advanced optical trapping by complex beam shaping. Laser Photon. Rev. 7(6), 839–854 (2013). https://doi.org/10.1002/lpor.201200058

    Article  ADS  Google Scholar 

  9. J.A. Rodrigo, T. Alieva, Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond. Optica 2(9), 812–815 (2015). https://doi.org/10.1364/OPTICA.2.000812

    Article  ADS  Google Scholar 

  10. Z. Wang, N. Zhang, X.-C. Yuan, High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication. Opt. Express 19(2), 482–492 (2011). https://doi.org/10.1364/OE.19.000482

    Article  ADS  Google Scholar 

  11. J. Wang, Advances in communications using optical vortices. Photonics Res. 4(5), B14–B28 (2016). https://doi.org/10.1364/PRJ.4.000B14

    Article  Google Scholar 

  12. S.N. Khonina, S.V. Karpeev, M.A. Butt, Spatial-light-modulator-based multichannel data transmission by vortex beams of various orders. Sensors 21(9), 2988 (2021). https://doi.org/10.3390/s21092988

    Article  ADS  Google Scholar 

  13. A.Y.M. Ng, C.W. See, M.G. Somekh, Quantitative optical microscope with enhanced resolution using a pixelated liquid crystal spatial light modulator. J. Microsc. 214(3), 334–340 (2004). https://doi.org/10.1111/j.0022-2720.2004.01323.x

    Article  MathSciNet  Google Scholar 

  14. C. Maurer, A. Jesacher, S. Bernet, M. Ritsch-Marte, What spatial light modulators can do for optical microscopy. Laser Photonics Rev. 5(1), 81–101 (2011). https://doi.org/10.1002/lpor.200900047

    Article  ADS  Google Scholar 

  15. M. Aakhte, E.A. Akhlaghi, H. Müller, J. Arno, SSPIM: a beam shaping toolbox for structured selective plane illumination microscopy. Sci. Rep. 8, 10067 (2018). https://doi.org/10.1038/s41598-018-28389-8

    Article  ADS  Google Scholar 

  16. T.-H. Tsai, X. Yuan, D.J. Brady, Spatial light modulator based color polarization imaging. Opt. Express 23(9), 11912–11926 (2015). https://doi.org/10.1364/OE.23.011912

    Article  ADS  Google Scholar 

  17. S. Mukherjee, A. Vijayakumar, J. Rosen, Spatial light modulator aided noninvasive imaging through scattering layers. Sci. Rep. 9, 17670 (2019). https://doi.org/10.1038/s41598-019-54048-7

    Article  ADS  Google Scholar 

  18. D. Pierangeli, G. Marcucci, C. Conti, Large-scale photonic Ising machine by spatial light modulation. Phys. Rev. Lett. 122(21), 213902 (2019). https://doi.org/10.1103/PhysRevLett.122.213902

    Article  ADS  Google Scholar 

  19. J.A. Davis, D.E. McNamara, D.M. Cottrell, T. Sonehara, Two-dimensional polarization encoding with a phase-only liquid crystal spatial light modulator. Appl. Opt. 39(10), 1549–1554 (2000). https://doi.org/10.1364/AO.39.001549

    Article  ADS  Google Scholar 

  20. I. Moreno, J.A. Davis, T.M. Hernandez, D.M. Cottrell, D. Sand, Complete polarization control of light from a liquid crystal spatial light modulator. Opt. Express 20(1), 364–376 (2012). https://doi.org/10.1364/OE.20.000364

    Article  ADS  Google Scholar 

  21. S.N. Khonina, A.V. Ustinov, A.P. Porfirev, Vector Lissajous laser beams. Opt. Lett. 45(15), 4112–4115 (2020). https://doi.org/10.1364/OL.398209

    Article  ADS  Google Scholar 

  22. L. Zhu, J. Wang, Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators. Sci. Rep. 4(1), 7441 (2014). https://doi.org/10.1038/srep07441

    Article  ADS  Google Scholar 

  23. R.W. Gerchberg, W.O. Saxton, A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35(2), 237–246 (1972)

    Google Scholar 

  24. C.-Y. Chen, W.-C. Li, H.-T. Chang, C.-H. Chuang, T.-J. Chang, 3-D modified Gerchberg-Saxton algorithm developed for panoramic computer-generated phase-only holographic display. J. Opt. Soc. Am. B 34(5), B42–B48 (2017). https://doi.org/10.1364/JOSAB.34.000B42

    Article  Google Scholar 

  25. T. Zhao, Y. Chi, Modified Gerchberg-Saxton (G-S) algorithm and its application. Entropy 22(12), 1354 (2020). https://doi.org/10.3390/e22121354

    Article  MathSciNet  ADS  Google Scholar 

  26. J.A. Davis, E.D. Wolfe, I. Moreno, D.M. Cottrell, Encoding complex amplitude information onto phase-only diffractive optical elements using binary phase Nyquist gratings. OSA Continuum 4(3), 896–910 (2021). https://doi.org/10.1364/OSAC.418578

    Article  Google Scholar 

  27. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, M. Ritsch-Marte, Tailoring of arbitrary optical vector beams. New J. Phys. 9(3), 78 (2007). https://doi.org/10.1088/1367-2630/9/3/078

    Article  ADS  Google Scholar 

  28. S.N. Khonina, A.P. Porfirev, Harnessing of inhomogeneously polarized Hermite-Gaussian vector beams to manage the 3D spin angular momentum density distribution. Nanophotonics 11(4), 697–712 (2022). https://doi.org/10.1515/nanoph-2021-0418

    Article  Google Scholar 

  29. N.K. Efremidis, D.N. Christodoulides, Abruptly autofocusing waves. Opt. Lett. 35(23), 4045–4047 (2010).

    Article  ADS  Google Scholar 

  30. I. Chremmos, N.K. Efremidis, D.N. Christodoulides, Pre-engineered abruptly autofocusing beams. Opt. Lett. 36(10), 1890–1892 (2011). https://doi.org/10.1364/OL.36.001890

    Article  ADS  Google Scholar 

  31. J.A. Davis, D.M. Cottrell, D. Sand, Abruptly autofocusing vortex beams. Opt. Express 20(12), 13302–13310 (2012). https://doi.org/10.1364/OE.20.013302

    Article  ADS  Google Scholar 

  32. P. Zhang, J. Prakash, Z. Zhang, M.S. Mills, N.K. Efremidis, D.N. Christodoulides, Z. Chen, Trapping and guiding microparticles with morphing autofocusing Airy beams. Opt. Lett. 36(15), 2883–2885 (2011). https://doi.org/10.1364/OL.36.002883

    Article  ADS  Google Scholar 

  33. Y. Jiang, K. Huang, X. Lu, Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle. Opt. Express 21(20), 24413–24421 (2013). https://doi.org/10.1364/OE.21.024413

    Article  ADS  Google Scholar 

  34. M. Manousidaki, D.G. Papazoglou, M. Farsari, S. Tzortzakis, Abruptly autofocusing beams enable advanced multiscale photo-polymerization. Optica 3(5), 525–530 (2016). https://doi.org/10.1364/OPTICA.3.000525

    Article  ADS  Google Scholar 

  35. P. Panagiotopoulos, D.G. Papazoglou, A. Couairon, S. Tzortzakis, Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets. Nat. Commun. 4, 2622 (2013). https://doi.org/10.1038/ncomms3622

    Article  ADS  Google Scholar 

  36. S. Liu, M. Wang, P. Li, P. Zhang, J. Zhao, Abrupt polarization transition of vector autofocusing Airy beams. Opt. Lett. 38(14), 2416–2418 (2013). https://doi.org/10.1364/OL.38.002416

    Article  ADS  Google Scholar 

  37. S.A. Degtyarev, S.G. Volotovsky, S.N. Khonina, Sublinearly chirped metalenses for forming abruptly autofocusing cylindrically polarized beams. J. Opt. Soc. Am. B 35(8), 1963–1969 (2018). https://doi.org/10.1364/JOSAB.35.001963

    Article  ADS  Google Scholar 

  38. G.A. Siviloglou, D.N. Christodoulides, Accelerating finite energy Airy beams. Opt. Lett. 32(8), 979–981 (2007). https://doi.org/10.1364/OL.32.000979

    Article  ADS  Google Scholar 

  39. A.A. Kovalev, V.V. Kotlyar, S.G. Zaskanov, Structurally stable three-dimensional and two-dimensional laser half Pearcey beams. Comput. Opt. 38(2), 193–197 (2014). https://doi.org/10.18287/0134-2452-2014-38-2-193-197

    Article  ADS  Google Scholar 

  40. F. Zang, Y. Wang, L. Li, Dual self-accelerating properties of one-dimensional finite energy Pearcey beam. Results Phys. 15, 102656 (2019). https://doi.org/10.1016/j.rinp.2019.102656

    Article  Google Scholar 

  41. T. Poston, I. Steward, Catastrophe theory and its applications (Pitman Publishing Limited, 1978)

    MATH  Google Scholar 

  42. R. Gilmore, Catastrophe theory for scientists and engineers (Wiley and Sons, New York, 1981)

    MATH  Google Scholar 

  43. AYu. Kravtsov, Yu.I. Orlov, Caustics, catastrophes, and wave fields. Sov. Phys. Usp. 26, 1038–1058 (1983). https://doi.org/10.1070/PU1983v026n12ABEH004582

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. P. Vaveliuk, A. Lencina, J.A. Rodrigo, O.M. Matos, Caustics, catastrophes, and symmetries in curved beams. Phys. Rev. A 92(3), 033850 (2015). https://doi.org/10.1103/PhysRevA.92.033850

    Article  ADS  Google Scholar 

  45. J. Ring, J. Lindberg, A. Mourka, M. Mazilu, K. Dholakia, M. Dennis, Auto-focusing and self-healing of Pearcey beams. Opt. Express 20(17), 18955–18966 (2012). https://doi.org/10.1364/OE.20.018955

    Article  ADS  Google Scholar 

  46. X. Chen, D. Deng, J. Zhuang, X. Yang, H. Liu, G. Wang, Nonparaxial propagation of abruptly autofocusing circular Pearcey Gaussian beams. Appl. Opt. 57(28), 8418–8423 (2018). https://doi.org/10.1364/AO.57.008418

    Article  ADS  Google Scholar 

  47. C. Sun, D. Deng, G. Wang, X. Yang, W. Hong, Abruptly autofocusing properties of radially polarized circle Pearcey vortex beams. Opt. Commun. 457, 124690 (2020). https://doi.org/10.1016/j.optcom.2019.124690

    Article  Google Scholar 

  48. S.N. Khonina, Mirror and circular symmetry of autofocusing beams. Symmetry 13(10), 1794 (2021). https://doi.org/10.3390/sym13101794

    Article  ADS  Google Scholar 

  49. P. Li, S. Liu, T. Peng, G. Xie, X. Gan, J. Zhao, Spiral autofocusing Airy beams carrying power-exponent phase vortices. Opt. Express 22(7), 7598–7606 (2014). https://doi.org/10.1364/OE.22.007598

    Article  ADS  Google Scholar 

  50. Y. Zhang, P. Li, S. Liu, L. Han, H. Cheng, J. Zhao, Manipulating spin-dependent splitting of vector abruptly autofocusing beam by encoding cosine-azimuthal variant phases. Opt. Express 24(25), 28409–28418 (2016). https://doi.org/10.1364/OE.24.028409

    Article  ADS  Google Scholar 

  51. S.N. Khonina, A.V. Ustinov, A.P. Porfirev, Aberration laser beams with autofocusing properties. Appl. Opt. 57(6), 1410–1416 (2018). https://doi.org/10.1364/AO.57.001410

    Article  ADS  Google Scholar 

  52. A. Brimis, K.G. Makris, D.G. Papazoglou, Tornado waves. Opt. Lett. 45(2), 280–283 (2020). https://doi.org/10.1364/OL.45.000280

    Article  ADS  Google Scholar 

  53. B. Lü, H. Ma, Beam propagation properties of radial laser arrays. J. Opt. Soc. Am. A 17(11), 2005–2009 (2000). https://doi.org/10.1364/JOSAA.17.002005

    Article  ADS  Google Scholar 

  54. Y. Izdebskaya, V. Shvedov, A. Volyar, Symmetric array of off-axis singular beams: spiral beams and their critical points. J. Opt. Soc. Am. A 25(1), 171–181 (2008). https://doi.org/10.1364/JOSAA.25.000171

    Article  ADS  Google Scholar 

  55. R.A. Suarez, A.A. Neves, M.R. Gesualdi, Generation and characterization of an array of Airy-vortex beams. Opt. Commun. 458, 124846 (2019). https://doi.org/10.1016/j.optcom.2019.124846

    Article  Google Scholar 

  56. L. Song, Z. Yang, S. Zhang, X. Li, Dynamics of rotating Laguerre-Gaussian soliton arrays. Opt. Express 27(19), 26331–26345 (2019). https://doi.org/10.1364/OE.27.026331

    Article  ADS  Google Scholar 

  57. J. Turunen, A. Vasara, A.T. Friberg, Holographic generation of diffraction-free beams. Appl. Opt. 27(19), 3959–3962 (1988). https://doi.org/10.1364/AO.27.003959

    Article  ADS  Google Scholar 

  58. Z. Zhai, Z. Cheng, Q. Lv, X. Wang, Tunable axicons generated by spatial light modulator with high-level phase computer generated holograms. Appl. Sci. 10(15), 5127 (2020). https://doi.org/10.3390/app10155127

    Article  Google Scholar 

  59. S.N. Khonina, N.L. Kazanskiy, P.A. Khorin, M.A. Butt, Modern types of axicons: new functions and applications. Sensors 21(19), 6690 (2021). https://doi.org/10.3390/s21196690

    Article  ADS  Google Scholar 

  60. I. Amidror, The Fourier-spectrum of circular sine and cosine gratings with arbitrary radial phases. Opt. Commun. 149(1–3), 127–134 (1998). https://doi.org/10.1016/S0030-4018(98)80006-0

    Article  ADS  Google Scholar 

  61. S. Hasegawa, H. Ito, H. Toyoda, Y. Hayasaki, Diffraction-limited ring beam generated by radial grating. OSA Continuum 1(2), 283–294 (2018). https://doi.org/10.1364/OSAC.1.000283

    Article  Google Scholar 

  62. S. Zheng, J. Wang, Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings. Sci. Rep. 7, 40781 (2017). https://doi.org/10.1038/srep40781

    Article  ADS  Google Scholar 

  63. L. Allen, M.W. Beijersbergen, R. Spreeuw, J. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45(11), 8185–8189 (1992). https://doi.org/10.1103/PhysRevA.45.8185

    Article  ADS  Google Scholar 

  64. A. O’Neil, I. MacVicar, L. Allen, M. Padgett, Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88(5), 053601 (2002). https://doi.org/10.1103/PhysRevLett.88.053601

    Article  ADS  Google Scholar 

  65. V. Namias, The fractional Fourier transform and its application in quantum mechanics. JIMA 25(3), 241–265 (1980). https://doi.org/10.1093/imamat/25.3.241

    Article  MathSciNet  MATH  ADS  Google Scholar 

  66. S. Abe, J.T. Sheridant, Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: an operator approach. J. Phys. A Math. Gen. 27(12), 4179–4187 (1994). https://doi.org/10.1088/0305-4470/27/12/023

    Article  MathSciNet  MATH  ADS  Google Scholar 

  67. T. Alieva, M.J. Bastiaans, M.L. Calvo, Fractional transforms in optical information processing. EURASIP J. Adv. Signal Process. 2005, 1498–1519 (2005). https://doi.org/10.1155/ASP.2005.1498

    Article  MathSciNet  MATH  Google Scholar 

  68. D. Mendlovic, H.M. Ozaktas, Fractional Fourier transformations and their optical implementation: I. J. Opt. Soc. Am. A 10(9), 1875–1881 (1993). https://doi.org/10.1364/JOSAA.10.001875

    Article  ADS  Google Scholar 

  69. J.N. McMullin, The ABCD matrix in arbitrarily tapered quadratic-index waveguides. Appl. Opt. 25(13), 2184–2184 (1986). https://doi.org/10.1364/AO.25.002184

    Article  ADS  Google Scholar 

  70. D.Q. Lu, W. Hu, Y.J. Zheng, Y.B. Liang, L.G. Cao, S. Lan, Q. Guo, Self-induced fractional Fourier transform and revivable higher-order spatial solitons in strongly nonlocal nonlinear media. Phys. Rev. A 78(4), 043815 (2008). https://doi.org/10.1103/PhysRevA.78.043815

    Article  ADS  Google Scholar 

  71. Z.P. Dai, Z.J. Yang, S.M. Zhang, Z.G. Pang, Propagation of anomalous vortex beams in strongly nonlocal nonlinear media. Opt. Commun. 350, 19–27 (2015). https://doi.org/10.1016/j.optcom.2015.03.071

    Article  ADS  Google Scholar 

  72. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and series. Volume 2: special functions (CRC Press, 1986)

    MATH  Google Scholar 

  73. H. Kogelnik, T. Li, Laser beams and resonators. Appl. Opt. 5(10), 1550–1567 (1966). https://doi.org/10.1364/AO.5.001550

    Article  ADS  Google Scholar 

  74. E.G. Abramochkin, T. Alieva, J.A. Rodrigo, Solutions of paraxial equations and families of Gaussian beams, in Mathematical optics: classical, quantum, and computational methods. ed. by V. Lakshmianrayanan, M.L. Calvo, T. Alieva (CRC Press, Boca Raton, 2013), pp.143–192

    MATH  Google Scholar 

  75. E. Abramochkin, V. Volostnikov, Spiral-type beams. Opt. Commun. 102(3–4), 336–350 (1993). https://doi.org/10.1016/0030-4018(93)90406-U

    Article  ADS  Google Scholar 

  76. V.V. Kotlyar, V.A. Soifer, S.N. Khonina, Rotation of multimode Gauss-Laguerre light beams in free space. Tech. Phys. Lett. 23(9), 657–658 (1997). https://doi.org/10.1134/1.1261648

    Article  ADS  Google Scholar 

  77. S.N. Khonina, A.P. Porfirev, A.V. Ustinov, Sudden autofocusing of superlinear chirp beams. J. Opt. 20(2), 025605 (2018). https://doi.org/10.1088/2040-8986/aaa075

    Article  ADS  Google Scholar 

  78. G.J. Schütz, M. Axmann, H. Schindler, Imaging single molecules in three dimensions. Sing. Mol. 2, 69–74 (2001)

    Article  Google Scholar 

  79. S.R.P. Pavani, R. Piestun, Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system. Opt. Express 16(26), 22048–22057 (2008)

    Article  ADS  Google Scholar 

  80. V. Anand, S. Khonina, R. Kumar, N. Dubey, A.N.K. Reddy, J. Rosen, S. Juodkazis, Three-dimensional incoherent imaging using spiral rotating point spread functions created by double-helix beams [Invited]. Nanoscale Res. Lett. 17, 37 (2022). https://doi.org/10.1186/s11671-022-03676-6

    Article  ADS  Google Scholar 

  81. M.W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, J.P. Woerdman, Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96(1–3), 123–132 (1993). https://doi.org/10.1016/0030-4018(93)90535-D

    Article  ADS  Google Scholar 

  82. V.V. Kotlyar, A.A. Kovalev, A.P. Porfirev, Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl. Opt. 56(14), 4095–4104 (2017). https://doi.org/10.1364/AO.56.004095

    Article  ADS  Google Scholar 

  83. S.A. Goorden, J. Bertolotti, A.P. Mosk, Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. Opt. Express 22(15), 17999–18009 (2014). https://doi.org/10.1364/OE.22.017999

    Article  ADS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (grant No. 22-12-00041) in part of theoretical and numerical results and by the Ministry of Science and Higher Education within the State assignment FSRC «Crystallography and Photonics» RAS (No. 007-GZ/Ch3363/26) in part of experimental investigations.

Author information

Authors and Affiliations

Authors

Contributions

SNK performed theoretical analysis and numerical simulation, APP conducted experimental realization. SNK and APP wrote the main manuscript text and reviewed the manuscript.

Corresponding author

Correspondence to Svetlana N. Khonina.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khonina, S.N., Porfirev, A.P. Clusters of rotating beams with autofocusing and transformation properties generated by a spatial light modulator. Appl. Phys. B 129, 50 (2023). https://doi.org/10.1007/s00340-023-07994-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-07994-0

Navigation