Skip to main content
Log in

Electro-optic tunable grating-assisted optical waveguide directional coupler in lithium niobate

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, a high-performance electro-optical tunable grating-assisted directional coupler (GADC) is proposed and demonstrated experimentally. Our proposed GADC consists of a two-mode waveguide (TMW) and a single-mode waveguide (SMW) formed with lithium niobate (LN). By introducing a long-period waveguide grating into the side-wall of the TMW to compensate for the phase mismatch of the fundamental modes of the SMW and TMW, the fundamental modes of the two waveguides can be coupled efficiently each other at a specific wavelength. Furthermore, push–pull electrode structure is introduced to achieve the electro-optic (EO) tuning function featuring high speed, low driving voltage, and large tuning range. The best LN GADC we fabricated on x-cut LN substrate using annealing proton exchange process shows a high isolation of ~ 34 dB at 1532.9 nm wavelength, quite large EO tuning efficiency of 1.195 nm/V (1526.4–1549.1 nm) or 1.736 nm/V (1576.1–1602.2 nm), and a thermo-optic tuning efficiency of 0.128 nm/°C (22–60 °C). Our proposed LN GADC can find applications in the fields of high-speed tunable wavelength filtering, mode filtering, and EO modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the corresponding authors upon reasonable request.

References

  1. R.R.A. Syms, Optical directional coupler with a grating overlay. Appl. Opt. 24, 717–726 (1985). https://doi.org/10.1364/AO.24.000717

    Article  ADS  Google Scholar 

  2. D. Marcuse, Directional couplers made of nonidentical asymmetric slabs part II: grating-assisted couplers. J. Lightwave Technol. 5, 268–273 (1987). https://doi.org/10.1109/JLT.1987.1075493

    Article  ADS  Google Scholar 

  3. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N.A.F. Jaeger, L. Chrostowski, Silicon photonic grating-assisted, contra-directional couplers. Opt. Exp. 21, 3633–3650 (2013). https://doi.org/10.1364/OE.21.003633

    Article  Google Scholar 

  4. M.T. Boroojerdi, M. Ménard, A.G. Kirk, Two-period contra-directional grating assisted coupler. Opt. Exp. 24, 22865–22874 (2016). https://doi.org/10.1364/OE.24.022865

    Article  Google Scholar 

  5. H.Y. Qiu, Y.X. Su, F.Z. Lin, J.F. Jiang, P. Yu, H. Yu, J.Y. Yang, X.Q. Jiang, Silicon add-drop filter based on multimode grating assisted couplers. IEEE Photon. J. 8, 7805308 (2016). https://doi.org/10.1109/JPHOT.2016.2625268

    Article  Google Scholar 

  6. L. Tian, F. Wang, Y.D. Wu, Y.J. Yi, X.Q. Sun, D.M. Zhang, Polymer/silica hybrid integration add-drop filter based on grating-assisted contradirectional coupler. Opt. Lett. 43, 2348–2351 (2018). https://doi.org/10.1364/OL.43.002348

    Article  ADS  Google Scholar 

  7. H.Y. Qiu, J.F. Jiang, P. Yu, D.B. Mu, J.Y. Yang, X.Q. Jiang, H. Yu, R. Cheng, L. Chrostowski, Narrow-band add-drop filter based on phase-modulated grating-assisted contra-directional couplers. J. Lightwave Tech. 36, 3760–3764 (2018). https://doi.org/10.1109/JLT.2018.2852483

    Article  ADS  Google Scholar 

  8. H.Y. Qiu, J.C. Niu, X. Liang, X.Q. Shen, T. Dai, P. Yu, R. Cheng, Flat-top, sharp-edge add-drop filters using complementary-misalignment-modulated grating-assisted contradirectional couplers. J. Lightwave Technol. 39, 5896–5901 (2021). https://doi.org/10.1109/JLT.2021.3092045

    Article  ADS  Google Scholar 

  9. H.Y. Qiu, Y.X. Su, P. Yu, T. Hu, J.Y. Yang, X.Q. Jiang, Compact polarization splitter based on silicon grating-assisted couplers. Opt. Lett. 40, 1885–1887 (2015). https://doi.org/10.1364/OL.40.001885

    Article  ADS  Google Scholar 

  10. W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, N.A.F. Jaeger, Grating-coupled silicon microring resonators. Appl. Phys. Lett. 100, 121118 (2012). https://doi.org/10.1063/1.3696082

    Article  ADS  Google Scholar 

  11. J.A. Davis, A. Grieco, M.C.M.M. Souza, N.C. Frateschi, Y. Fainman, Hybrid multimode resonators based on grating-assisted counter-directional couplers. Opt. Exp. 25, 16484–16490 (2017). https://doi.org/10.1364/OE.25.016484

    Article  Google Scholar 

  12. X. Wang, Y. Zhao, Y.H. Ding, S.S. Xiao, J.J. Dong, Tunable optical delay line based on integrated grating-assisted contradirectional couplers. Photon. Res. 6, 880–886 (2018). https://doi.org/10.1364/PRJ.6.000880

    Article  Google Scholar 

  13. L. Zhu, J.Q. Sun, Y. Zhou, Silicon-based wavelength division multiplexer using asymmetric grating-assisted couplers. Opt. Exp. 27, 23234–23248 (2019). https://doi.org/10.1364/OE.27.023234

    Article  Google Scholar 

  14. D.B. Mu, H.Y. Qiu, J.F. Jiang, X.F. Wang, Z.L. Fu, Y.H. Wang, X.Q. Jiang, H. Yu, J.Y. Yang, A four-channel DWDM tunable add/drop demultiplexer based on silicon waveguide Bragg gratings. IEEE Photon. J. 11, 6600708 (2019). https://doi.org/10.1109/JPHOT.2019.2897359

    Article  Google Scholar 

  15. H.Y. Qiu, H. Yu, T. Hu, G.M. Jiang, H.F. Shao, P. Yu, J.Y. Yang, X.Q. Jiang, Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt. Exp. 21, 17904–17911 (2013). https://doi.org/10.1364/OE.21.017904

    Article  Google Scholar 

  16. C.C. Gui, Y. Gao, Z.L. Zhang, J. Wang, On-Chip silicon two-mode (de)multiplexer for OFDM/OQAM data transmission based on grating-assisted coupler. IEEE Photon. J. 7, 7905807 (2015). https://doi.org/10.1109/JPHOT.2015.2506339

    Article  Google Scholar 

  17. X.M. Nie, N.N. Turk, Y. Li, Z.Y. Liu, R. Baets, High extinction ratio on-chip pump-rejection filter based on cascaded grating-assisted contra-directional couplers in silicon nitride rib waveguides. Opt. Lett. 44, 2310–2313 (2019). https://doi.org/10.1364/OL.44.002310

    Article  ADS  Google Scholar 

  18. M.S. Kwon, Silicon photonic add-drop filter based on a grating-assisted co-directionally coupled vertical hybrid structure. Opt. Exp. 27, 11748–11765 (2019). https://doi.org/10.1364/OE.27.011748

    Article  Google Scholar 

  19. F. Liu, H. Hier, T.L. Worchesky, Dual-side processed demultiplexer using grating-assisted codirectional coupler. IEEE Photon. Technol. Lett. 17, 600–602 (2005). https://doi.org/10.1109/LPT.2004.841027

    Article  ADS  Google Scholar 

  20. R.C. Alferness, T.L. Koch, L.L. Buhl, F. Storz, F. Heismann, M.J.R. Martyak, Grating assisted InGaAsP/InP vertical codirectional coupler filter. Appl. Phys. Lett. 55, 2011–2013 (1989). https://doi.org/10.1063/1.102148

    Article  ADS  Google Scholar 

  21. S.W. Ahn, S.Y. Shin, Grating-assisted codirectional coupler filter using electrooptic and passive polymer waveguides. IEEE J. Sel. Topics Quantum Electron. 7, 819–825 (2001). https://doi.org/10.1109/2944.979343

    Article  ADS  Google Scholar 

  22. J.H. Li, M.H. Zhou, H. Yao, M.K. Wang, J.Y. Wu, K.X. Chen, Grating-assisted directional coupler in lithium niobate for tunable mode filtering. IEEE Photon. J. 13, 6600807 (2021). https://doi.org/10.1109/JPHOT.2021.3061089

    Article  Google Scholar 

  23. Y. Wang, K. X. Chen, L.F. Wang, K.S. Chiang, Sidewall-grating-assisted polymer- waveguide directional coupler for forward coupling of fundamental modes. Asia Commun. Photon. Conf. ASu3A.3 (2015). https://doi.org/10.1364/ACPC.2015.ASu3A.3

  24. Q. Liu, Z.H. Gu, M.K. Park, J.H. Chung, Experimental demonstration of highly sensitive optical sensor based on grating-assisted light coupling between strip and slot waveguides. Opt. Exp. 24, 12549–12556 (2016). https://doi.org/10.1364/OE.24.012549

    Article  Google Scholar 

  25. F.W. Dabby, A. Kestenbaum, U.C. Paek, Periodic dielectric waveguides. Opt. Commun. 6, 125–130 (1972). https://doi.org/10.1016/0030-4018(72)90209-X

    Article  ADS  Google Scholar 

  26. K. Sukada, A. Yariv, Analysis of optical propagation in a corrugated dielectric waveguide. Opt. Commun. 8, 1–4 (1973). https://doi.org/10.1016/0030-4018(73)90167-3

    Article  ADS  Google Scholar 

  27. A. Yariv, M. Nakamura, Periodic structures for integrated optics. IEEE J. Quantum Electron. 13, 233–252 (1977). https://doi.org/10.1109/JQE.1977.1069323

    Article  ADS  Google Scholar 

  28. R.V. Schmidt, D.C. Flanders, C.V. Shank, R.D. Standley, Narrow-band grating filters for thin-film optical waveguides. Appl. Phys. Lett. 25, 651–652 (1974). https://doi.org/10.1063/1.1655346

    Article  ADS  Google Scholar 

  29. J. Bjorkholm, C. Shank, Distributed feedback lasers in thin film optical waveguides. IEEE J. Quantum Electron. 8, 833–838 (1972). https://doi.org/10.1109/JQE.1972.1076871

    Article  ADS  Google Scholar 

  30. Y.P. Wang, J.P. Cheng, X.W. Li, J.H. Zhou, H. Shen, C.H. Shi, X.H. Zhang, J.X. Hong, A.L. Ye, Fast tunable electro-optic polymer waveguide gratings. Acta Phys. Sin. 54, 4782–4788 (2005)

    Article  Google Scholar 

  31. W.F. Zhang, N. Ehteshami, W.L. Liu, J.P. Yao, Silicon-based on-chip electrically tunable sidewall Bragg grating Fabry-Perot filter. Opt. Lett. 40, 3153–3156 (2015). https://doi.org/10.1364/OL.40.003153

    Article  ADS  Google Scholar 

  32. K. Abdelsalam, E. Ordouie, M.G. Vazimali, F.A. Juneghani, P. Kumar, G.S. Kanter, S. Fathpour, Tunable dual-channel ultra-narrowband Bragg grating filter on thin-film lithium niobate. Opt. Lett. 46, 2730–2733 (2021). https://doi.org/10.1364/OL.427101

    Article  ADS  Google Scholar 

  33. A. D’Alessandro, D. Donisi, L.D. Sio, R. Beccherelli, R. Asquini, R. Caputo, C. Umeton, Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating. Opt. Exp. 16, 9254–9260 (2008). https://doi.org/10.1364/OE.16.009254

    Article  Google Scholar 

  34. A. Paliwal, A. Sharma, R. Guo, A.S. Bhalla, V. Gupta, M. Tomar, Electro-optic (EO) effect in proton-exchanged lithium niobite: towards EO modulator. Appl. Phys. B. 125, 115 (2019). https://doi.org/10.1007/s00340-019-7227-7

    Article  ADS  Google Scholar 

  35. M. Bazzan, C. Sada, Optical waveguides in lithium niobate: Recent developments and applications. Appl. Phys. Rev. 2, 040603 (2015). https://doi.org/10.1063/1.4931601

    Article  ADS  Google Scholar 

  36. M.R. Zhang, W. Ai, K.X. Chen, W. Jin, K.S. Chiang, A lithium-niobate waveguide directional coupler for switchable mode multiplexing. IEEE Photon. Technol. Lett. 30, 1764–1767 (2018). https://doi.org/10.1109/LPT.2018.2868834

    Article  ADS  Google Scholar 

  37. M.R. Zhang, K.X. Chen, W. Jin, J.Y. Wu, K.S. Chiang, Electro-optic mode-selective switch based on cascaded three-dimensional lithium-niobate waveguide directional couplers. Opt. Exp. 28, 35506–35517 (2020). https://doi.org/10.1364/OE.406020

    Article  Google Scholar 

  38. K.S. Chiang, S.Y. Cheng, Technique of applying the prism-coupler method for accurate measurement of the effective indices of channel waveguides. Opt. Eng. 47, 034601 (2008). https://doi.org/10.1117/1.2896412

    Article  ADS  Google Scholar 

  39. Q. Liu, K.S. Chiang, V. Rastogi, Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence. J. Lightwave Tech. 21, 3399–3405 (2003). https://doi.org/10.1109/JLT.2003.821749

    Article  ADS  Google Scholar 

  40. Y.H. Jiang, X. Han, Y.Y. Li, H.F. Xiao, H.J. Huang, P. Zhang, A. Dubey, M.R. Yuan, T.G. Nguyen, A. Boes, Y.T. Li, G.H. Ren, J.Z. Xue, Q.F. Hao, Y.K. Su, A. Mitchell, Y.H. Tian, High-speed optical mode switch in lithium niobate on insulator. ACS Photon (2023). https://doi.org/10.1021/acsphotonics.2c01364

    Article  Google Scholar 

  41. M.K. Wang, J.H. Li, H. Yao, X.P. Li, J.Y. Wu, K.S. Chiang, K.X. Chen, Thin-film lithium-niobate modulator with a combined passive bias and thermo-optic bias. Opt. Exp. 30, 39706–39715 (2022). https://doi.org/10.1364/OE.474594

    Article  Google Scholar 

  42. M.Y. Xu, Y.T. Zhu, F. Pittalà, J. Tang, M.B. He, W.C. Ng, J.Y. Wang, Z.L. Ruan, X.F. Tang, M. Kuschnerov, L. Liu, S.Y. Yu, B.F. Zheng, X.L. Cai, Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica. 9, 61–62 (2022). https://doi.org/10.1364/OPTICA.449691

    Article  ADS  Google Scholar 

  43. H.N. Xu, D.X. Dai, L. Liu, Y.C. Shi, Proposal for an ultra-broadband polarization beam splitter using an anisotropy-engineered Mach-Zehnder interferometer on the x-cut lithium-niobate-on-insulator. Opt. Exp. 28, 10899–10908 (2020). https://doi.org/10.1364/OE.390075

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the grants from the National Natural Science Foundation of China (NSFC) (Grant Nos. 62075027, U20A20165), the Key R&D Program of Sichuan Province (Grant No. 2020YFSY0003), and the Key Technology R&D Program of Shenzhen (Grant No. JSGG20210802154413040).

Author information

Authors and Affiliations

Authors

Contributions

JL and KC wrote the main manuscript text and prepared all figures. Both reviewed the manuscript.

Corresponding author

Correspondence to Kai Xin Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J.H., Chen, K.X. Electro-optic tunable grating-assisted optical waveguide directional coupler in lithium niobate. Appl. Phys. B 129, 39 (2023). https://doi.org/10.1007/s00340-023-07986-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-07986-0

Navigation