Skip to main content
Log in

Experimental X-ray emission doses from GHz repetitive burst laser irradiation at 100 kHz repetition rate

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Material processing with high repetition rate ultra-short laser pulses with intensities higher than 10\(^{13}\) W/cm\(^{2}\) may lead to the X-ray emission dose exceeding allowed dose limits. We have investigated a worse-case exposure scenario, in which laser processing parameters were tuned to maximize X-ray yield. Use of double pulse regime leads to increase of the X-ray yield up to two orders of magnitude compared with the single pulse regime. \(H^{\prime }\)(0.07) and H*(10) dose rates were measured using X-ray spectrometer and electronic dosimeter. Maximum dose rates at 35 cm distance from the X-ray source calculated using spectrometer data exceeded 1 Sv/h and 9 mSv/h, respectively. Dose rates measured using the dosimeter were lower. The difference is attributed to narrower X-ray spectral range detectable by dosimeters, which may lead to underestimation of exposure doses in the laser processing laboratories. The presented method might be used as an example to evaluate X-ray yield and optimize measures of radiation protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. K. Sugioka, Progress in ultrafast laser processing and future prospects. Nanophotonics 6(2), 393–413 (2017). https://doi.org/10.1515/nanoph-2016-0004

    Article  Google Scholar 

  2. F. Morin, F. Druon, M. Hanna, P. Georges, Microjoule femtosecond fiber laser at 1.6 \(\mu\)m for corneal surgery applications. Opt. Lett. 34(13), 1991–1993 (2009). https://doi.org/10.1364/OL.34.001991

    Article  ADS  Google Scholar 

  3. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, S. Juodkazis, Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5(8), 16133 (2016). https://doi.org/10.1038/lsa.2016.133

    Article  Google Scholar 

  4. S.A. Ashforth, R.N. Oosterbeek, O.L.C. Bodley, C. Mohr, C. Aguergaray, M.C. Simpson, Femtosecond lasers for high-precision orthopedic surgery. Lasers Med. Sci. 35(6), 1263–1270 (2020). https://doi.org/10.1007/s10103-019-02899-x

    Article  Google Scholar 

  5. S. Weber, S. Bechet, S. Borneis, L. Brabec, M. Bučka, E. Chacon-Golcher, M. Ciappina, M. DeMarco, A. Fajstavr, K. Falk, E.R. Garcia, J. Grosz, Y.J. Gu, J.C. Hernandez, M. Holec, P. Janečka, M. Jantač, M. Jirka, H. Kadlecova, D. Khikhlukha, O. Klimo, G. Korn, D. Kramer, D. Kumar, T. Lastovička, P. Lutoslawski, L. Morejon, V. Olšovcová, M. Rajdl, O. Renner, B. Rus, S. Singh, M. Šmid, M. Sokol, R. Versaci, R. Vrána, M. Vranic, J. Vyskočil, A. Wolf, Q. Yu, P3: an installation for high-energy density plasma physics and ultra-high intensity laser-matter interaction at ELI-beamlines. Matter Radiat. Extremes 2(4), 149–176 (2017). https://doi.org/10.1016/j.mre.2017.03.003

    Article  Google Scholar 

  6. H. Legall, C. Schwanke, S. Pentzien, G. Dittmar, J. Bonse, J. Krüger, X-ray emission as a potential hazard during ultrashort pulse laser material processing. Appl. Phys. A 124(6), 407 (2018). https://doi.org/10.1007/s00339-018-1828-6

    Article  ADS  Google Scholar 

  7. W. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley, Boston, 1988)

    Google Scholar 

  8. P. Gibbon, Efficient production of fast electrons from femtosecond laser interaction with solid targets. Phys. Rev. Lett. 73(5), 664–667 (1994). https://doi.org/10.1103/PhysRevLett.73.664

    Article  ADS  Google Scholar 

  9. F.N. Beg, A.R. Bell, A.E. Dangor, C.N. Danson, A.P. Fews, M.E. Glinsky, B.A. Hammel, P. Lee, P.A. Norreys, M. Tatarakis, A study of picosecond laser-solid interactions up to 10\(^{19}\) W/cm\(^{2}\). Phys. Plasmas 4(2), 447–457 (1997). https://doi.org/10.1063/1.872103

    Article  ADS  Google Scholar 

  10. V. Barkauskas, A. Plukis, Prediction of the irradiation doses from ultrashort laser-solid interactions using different temperature scalings at moderate laser intensities. J. Radiol. Prot. 42(1), 011501 (2022). https://doi.org/10.1088/1361-6498/ac44fb

    Article  Google Scholar 

  11. M.J. Wesolowski, C.C. Scott, B. Wales, A. Ramadhan, S. Al-Tuairqi, S.N. Wanasundara, K.S. Karim, J.H. Sanderson, C.A. Wesolowski, P.S. Babyn, X-ray dosimetry during low-intensity femtosecond laser ablation of molybdenum in ambient conditions. IEEE Trans. Nucl. Sci. 64(9), 2519–2522 (2017)

    Article  ADS  Google Scholar 

  12. R. Weber, R. Giedl-Wagner, D.J. Förster, A. Pauli, T. Graf, J.E. Balmer, Expected X-ray dose rates resulting from industrial ultrafast laser applications. Appl. Phys. A 125(9), 635 (2019)

    Article  ADS  Google Scholar 

  13. J. Reklaitis, V. Barkauskas, A. Plukis, V. Kovalevskij, M. Gaspariūnas, D. Germanas, J. Garankin, T. Stanislauskas, K. Jasiūnas, V. Remeikis, Emission and dose characterization of the 1 kHz repetition rate high-Z metal K\(\alpha\) source driven by 20 mJ femtosecond pulses. Appl. Phys. B 125(3), 41 (2019)

    Article  ADS  Google Scholar 

  14. H. Legall, J. Bonse, J. Krüger, Review of X-ray exposure and safety issues arising from ultra-short pulse laser material processing. J. Radiol. Prot. 41(1), 28–42 (2021). https://doi.org/10.1088/1361-6498/abcb16

    Article  Google Scholar 

  15. L. Martín, J. Benlliure, D. Cortina-Gil, J. Peñas, C. Ruiz, Improved stability of a compact vacuum-free laser-plasma X-ray source. High Power Laser Sci. Eng. 8, 18 (2020). https://doi.org/10.1017/hpl.2020.15

    Article  Google Scholar 

  16. J. Schille, S. Kraft, T. Pflug, C. Scholz, M. Clair, A. Horn, U. Loeschner, Study on X-ray emission using ultrashort pulsed lasers in materials processing. Materials 14(16) (2021). https://doi.org/10.3390/ma14164537

  17. J. Schille, S. Kraft, D. Kattan, U. Löschner, Enhanced X-ray emissions arising from high pulse repetition frequency ultrashort pulse laser materials processing. Materials 15(8) (2022). https://doi.org/10.3390/ma15082748

  18. J. Holland, R. Weber, M. Sailer, C. Hagenlocher, T. Graf, Pulse duration dependency of the X-ray emission during materials processing with ultrashort laser pulses. Procedia CIRP 111, 855–858 (2022)

    Article  Google Scholar 

  19. W. Lu, M. Nicoul, U. Shymanovich, A. Tarasevitch, P. Zhou, K. Sokolowski-Tinten, D.v.d. Linde, M. Masek, P. Gibbon, U. Teubner, Optimized Kalpha X-ray flashes from femtosecond-laser-irradiated foils. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 80(2) (2009). https://doi.org/10.1103/PHYSREVE.80.026404

  20. M. Afshari, P. Krumey, D. Menn, M. Nicoul, F. Brinks, A. Tarasevitch, K. Sokolowski-Tinten, Time-resolved diffraction with an optimized short pulse laser plasma X-ray source. Struct. Dyn. 7(1), 014301 (2020). https://doi.org/10.1063/1.5126316

    Article  Google Scholar 

  21. M. Barkauskas, K. Neimontas, V. Butkus. Device and method for generation of high repetition rate laser pulse bursts. Google Patents (2020)

  22. D. Metzner, M. Olbrich, P. Lickschat, A. Horn, S. Weissmantel, X-ray generation by laser ablation using MHz to GHz pulse bursts. J. Laser Appl. 33(3), 032014 (2021). https://doi.org/10.2351/7.0000403

    Article  ADS  Google Scholar 

  23. A.A. Garmatina, B.G. Bravy, F.V. Potemkin, M.M. Nazarov, V.M. Gordienko, Intensity clamping and controlled efficiency of X-ray generation under femtosecond laser interaction with nanostructured target in air and helium. J. Phys. Conf. Ser. 1692(1), 012004 (2020). https://doi.org/10.1088/1742-6596/1692/1/012004

    Article  Google Scholar 

  24. Conversion Coefficients for use in Radiological Protection against External Radiation. ICRP Publication 74. Ann. ICRP 26(3-4) (1996)

  25. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann. ICRP 37(2-4), 1–332 (2007). https://doi.org/10.1016/j.icrp.2007.10.003

  26. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin, 2005), pp.263–346. https://doi.org/10.1007/3-540-28882-1_7

    Book  Google Scholar 

  27. Y. Hironaka, K.G. Nakamura, K. Kondo, Angular distribution of X-ray emission from a copper target irradiated with a femtosecond laser. Appl. Phys. Lett. 77(25), 4110–4111 (2000). https://doi.org/10.1063/1.1335841

    Article  ADS  Google Scholar 

  28. B. Hou, A. Mordovanakis, J. Easter, K. Krushelnick, J.A. Nees, Directional properties of hard X-ray sources generated by tightly focused ultrafast laser pulses. Appl. Phys. Lett. 93(20), 201503 (2008). https://doi.org/10.1063/1.3023065

    Article  ADS  Google Scholar 

  29. L. Rimkus, I. Stasevičius, M. Barkauskas, L. Giniūnas, V. Barkauskas, S. Butkus, M. Vengris, Compact high-flux X-ray source based on irradiation of solid targets by gigahertz and megahertz bursts of femtosecond laser pulses. Opt. Contin. 1(8), 1819–1836 (2022). https://doi.org/10.1364/OPTCON.463291

    Article  Google Scholar 

  30. H. Nakano, T. Nishikawa, H. Ahn, N. Uesugi, Temporal evolution of soft X-ray pulse emitted from aluminum plasma produced by a pair of Ti:sapphire laser pulses. Appl. Phys. Lett. 69(20), 2992–2994 (1996). https://doi.org/10.1063/1.117754

    Article  ADS  Google Scholar 

  31. N. Petoussi-Henss, W. Bolch, K. Eckerman, A. Endo, N. Hertel, J. Hunt, M. Pelliccioni, H. Schlattl, M. Zankl, Conversion coefficients for radiological protection quantities for external radiation exposures. Ann. ICRP 40(2–5), 1–257 (2010). https://doi.org/10.1016/j.icrp.2011.10.001

    Article  Google Scholar 

  32. P. Ambrosi, M. Borowski, M. Iwatschenko, Considerations concerning the use of counting active personal dosemeters in pulsed fields of ionising radiation. Radiat. Prot. Dosim. 139(4), 483–493 (2010). https://doi.org/10.1093/rpd/ncp286

    Article  Google Scholar 

  33. U. Ankerhold, O. Hupe, P. Ambrosi, Deficiencies of active electronic radiation protection dosemeters in pulsed fields. Radiat. Prot. Dosim. 135(3), 149–153 (2009). https://doi.org/10.1093/rpd/ncp099

    Article  Google Scholar 

  34. O. Hupe, H. Zutz, J. Klammer, Radiation protection dosimetry in pulsed radiation fields. IRPA 13 Glasgow (2012)

  35. M. Gotz, Dosimetry of highly pulsed radiation fields. PhD thesis, Technischen Universität Dresden (2018). https://www.hzdr.de/publications/PublDoc-12055.pdf

  36. K. Makarevich, R. Beyer, J. Henniger, Y. Ma, S. Polter, M. Sommer, T. Teichmann, D. Weinberger, T. Kormoll, Active dosimetry with the ability to distinguish pulsed and non-pulsed dose rate contributions. EPJ Web Conf. 253, 09001 (2021). https://doi.org/10.1051/epjconf/202125309001

    Article  Google Scholar 

  37. E. Haug, W. Nakel, The Elementary Process of Bremsstrahlung (World Scientific, Singapore, 2004). https://doi.org/10.1142/5371

    Book  Google Scholar 

  38. A. Krygier, G.E. Kemp, F. Coppari, D.B. Thorn, D. Bradley, A. Do, J.H. Eggert, W. Hsing, S.F. Khan, C. Krauland, O.L. Landen, M.J. MacDonald, J.M. McNaney, H.S. Park, B.A. Remington, M. Rubery, M.B. Schneider, H. Sio, Y. Ping, Optimized continuum X-ray emission from laser-generated plasma. Appl. Phys. Lett. 117(25), 251106 (2020). https://doi.org/10.1063/5.0033629

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project has received funding from European Social Fund (project No 09.3.3-LMT-K-712-19-0014) under grant agreement with the Research Council of Lithuania (LMTLT).

Author information

Authors and Affiliations

Authors

Contributions

V.B.: Conceptualization, Methodology, Validation, Investigation, Resources, Writing original draft, Funding acquisition, L.R: Conceptualization, Methodology, Validation, Formal Analysis, Investigation, Resources, Writing - Original Draft, Visualization, J.R.: Investigation, Resources, A.P.: Supervision, Funding acquisition, M.V.: Conceptualization, Methodology, Software, Validation, Writing - Review & Editing, Supervision, Project administration.

Corresponding author

Correspondence to Vytenis Barkauskas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkauskas, V., Rimkus, L., Reklaitis, J. et al. Experimental X-ray emission doses from GHz repetitive burst laser irradiation at 100 kHz repetition rate. Appl. Phys. B 129, 42 (2023). https://doi.org/10.1007/s00340-023-07980-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-07980-6

Navigation