Skip to main content
Log in

The evolution and interaction of the asymmetric Pearcey–Gaussian beam in nonlinear Kerr medium

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, the evolution and interaction of the Pearcey–Gaussian beam in nonlinear Kerr medium are numerically studied. The results show that the self-focusing effect can suppress the inversion of the Pearcey–Gaussian beam and cause the main lobe and side lobes of Pearcey–Gaussian beam to separate, forming solitons during propagation, while the defocusing effect can retain partially the beam inversion and accelerate its spatial expansion after the inversion. As for the interaction between the Pearcey–Gaussian beams, in self-focusing medium, except for the elastic interaction between the main lobes, the in-phase between them can result in the pattern of periodic collision around the center of coordinate caused by the side lobes, while the out-of-phase can suppress its occurrence. In defocusing medium, the interactions of the in-phase and out-of-phase Pearcey–Gaussian beams show the constructive and destructive interference, respectively. Finally, the influence of the width of Gaussian function in Pearcey–Gaussian beam on the interaction of the two Pearcey–Gaussian beams is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.A. Siviloglou, D.N. Christodoulides, Accelerating finite energy Airy beams. Opt. Lett. 32, 979–81 (2007)

    Article  ADS  Google Scholar 

  2. G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Observation of accelerating Airy beams. Phys. Rev. Lett. 99, 213901 (2007)

    Article  ADS  Google Scholar 

  3. J. Broky, G.A. Siviloglou, A. Dogariu, D.N. Christodoulides, Self-healing properties of optical Airy beams. Opt. Express 16, 12880–91 (2008)

    Article  ADS  Google Scholar 

  4. G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Ballistic dynamics of Airy beams. Opt. Lett. 33, 207–9 (2008)

    Article  ADS  Google Scholar 

  5. J. Arlt, K. Dholakia, Generation of high-order Bessel beams by use of an axicon. Opt. Commun. 177, 297–301 (2000)

    Article  ADS  Google Scholar 

  6. W. Hu, H. Guo, Ultrashort pulsed bessel beams and spatially induced group-velocity dispersion. J. Opt. Soc. Am. A 19, 49–53 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. P. Zhang, J. Prakash, Z. Zhang, M.S. Mills, N.K. Efremidis, D.N. Christodoulides, Z. Chen, Trapping and guiding microparticles with morphing autofocusing Airy beams. Opt. Lett. 36, 2883–5 (2011)

    Article  ADS  Google Scholar 

  8. P. Polynkin, M. Kolesik, J.V. Moloney, G.A. Siviloglou, D.N. Christodoulides, Curved plasma channel generation using ultraintense Airy beams. Science 324, 229–232 (2009)

    Article  ADS  Google Scholar 

  9. M.K. Bhuyan, F. Courvoisier, P.A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, J.M. Dudley, High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Appl. Phys. Lett. 97, 219 (2010)

    Article  Google Scholar 

  10. X. Jin, M. Shui, Y. Wang, C. Li, J. Yang, X. Zhang, K. Yang, Y. Song, Theory of Z-scan technique using Gaussian-Bessel beams with a phase object. Chin. Phys. B 19, 074203 (2010)

    Article  ADS  Google Scholar 

  11. T. Pearcey, The structure of an electromagnetic eld in the neighborhood of a cusp of a caustic. Philos. Mag. Sci. 37, 311–317 (1946)

    Article  MathSciNet  Google Scholar 

  12. J.D. Ring, J. Lindberg, A. Mourka, M. Mazilu, K. Dholakia, M.R. Dennis, Auto-focusing and self-healing of Pearcey beams. Opt. Express 20, 18955–66 (2012)

    Article  ADS  Google Scholar 

  13. D. Deng, C. Chen, X. Zhao, B. Chen, X. Peng, Y. Zheng, Virtual source of a Pearcey beam. Opt. Lett. 39, 2703–6 (2014)

    Article  ADS  Google Scholar 

  14. A.A. Kovalev, V.V. Kotlyar, Pearcey beams carrying orbital angular momentum. Comput. Opt. 39, 453–458 (2015)

    Article  ADS  Google Scholar 

  15. F. Boufalah, L.D. Essakali, H. Nebdi, A. Belafhal, Effect of turbulent atmosphere on the on-axis average intensity of Pearcey–Gaussian beam. Chin. Phys. B 25, 064208 (2016)

    Article  Google Scholar 

  16. C. Xu, L. Lin, Z. Huang, Y. Chen, X. Yang, H. Liu, D. Deng, Propagation of a radially polarized Pearcey beam in uniaxial crystals. Laser Phys. 28, 115001 (2018)

    Article  ADS  Google Scholar 

  17. H. Hu, F. Wu, R. Hu, Y. Yang, Q. Zhu, Formation and focusing characteristics of Pearcey beam. Infrared Laser Eng. 47, 0618003 (2018)

    Article  Google Scholar 

  18. X. Chen, D. Deng, J. Zhuang, X. Peng, D. Li, L. Zhang, Z. Fang, X. Yang, H. Liu, G. Wang, Focusing properties of circle Pearcey beams. Opt. Lett. 43, 3626–3629 (2018)

    Article  ADS  Google Scholar 

  19. X. Chen, J. Zhuang, D. Li, L. Zhang, X. Peng, F. Zhao, X. Yang, H. Liu, D. Deng, Spatiotemporal rapidly autofocused ring Pearcey Gaussian vortex wavepackets. J. Opt. 20, 075607 (2018)

    Article  ADS  Google Scholar 

  20. X. Chen, D. Deng, J. Zhuang, X. Yang, H. Liu, G. Wang, Nonparaxial propagation of abruptly autofocusing circular Pearcey Gaussian beams. Appl. opt. 57, 8418–8423 (2018)

    Article  ADS  Google Scholar 

  21. K. Chen, H. Qiu, Y. Wu, Z. Lin, H. Huang, L. Shui, D. Deng, H. Liu, Z. Chen, Generation and control of dynamically tunable circular Pearcey beams with annular spiral-zone phase. Sci. China Phys. Mech. 64, 1–10 (2021)

    Article  Google Scholar 

  22. L. Zhang, S. He, X. Peng, L. Huang, X. Yang, G. Wang, H. Liu, Y. He, D. Deng, Tightly focusing evolution of the auto-focusing linear polarized circular Pearcey Gaussian vortex beams. Chaos Soliton. Fract. 143, 110608 (2021)

    Article  MathSciNet  Google Scholar 

  23. A.A. Kovalev, V.V. Kotlyar, S.G. Zaskanov, Structurally stable three-dimensional and two-dimensional laser half Pearcey beams. Comput. Opt. 38, 193–197 (2014)

    Article  ADS  Google Scholar 

  24. A.A. Kovalev, V.V. Kotlyar, S.G. Zaskanov, A.P. Porfirev, Half Pearcey laser beams. J. Opt. 17, 035604 (2015)

    Article  ADS  Google Scholar 

  25. A.A. Kovalev, V.V. Kotlyar, A.P. Porfirev, Generation of half-pearcey laser beams by a spatial light modulator. Comput. Opt. 38, 658–662 (2014)

    Article  ADS  Google Scholar 

  26. Z. Ren, C. Fan, Y. Shi, B. Chen, Symmetric form-invariant dual Pearcey beams. J. Opt. Soc. Am. A 33, 1523–30 (2016)

    Article  ADS  Google Scholar 

  27. Z. Ren, X. Li, H. Jin, Y. Shi, Z. Yang, Construction of Bi-Pearcey beams and their mathematical mechanism. Acta Phys. Sin. 65, 214208 (2016)

    Article  Google Scholar 

  28. X. Zhou, Z. Pang, D. Zhao, Partially coherent Pearcey-Gauss beams. Opt. Lett. 45, 5496–5499 (2020)

    Article  ADS  Google Scholar 

  29. Y. Liu, C. Xu, Z. Lin, Y. Wu, Y. Wu, L. Wu, D. Deng, Auto-focusing and self-healing of symmetric odd-Pearcey Gauss beams. Opt. Lett. 45, 2957–2960 (2020)

    Article  ADS  Google Scholar 

  30. J. Zhao, Y. Wu, Z. Lin, D. Xu, H. Huang, C. Xu, Z. Tu, H. Liu, L. Shui, D. Deng, Autofocusing self-imaging: symmetric Pearcey Talbot-like effect. Opt. Express 30, 14146–14160 (2022)

    Article  ADS  Google Scholar 

  31. Z. Lin, C. Xu, H. Huang, Y. Wu, H. Qiu, X. Fu, K. Chen, X. Yu, D. Deng, Accelerating trajectory manipulation of symmetric Pearcey Gaussian beam in a uniformly moving parabolic potential. Opt. Express 29, 16270–16283 (2021)

    Article  ADS  Google Scholar 

  32. F. Zang, Y. Wang, L. Li, Dual self-accelerating properties of one-dimensional finite energy Pearcey beam. Res. Phys. 15, 102656 (2019)

    Google Scholar 

  33. Z. Lin, C. Xu, H. Huang, Y. Wu, H. Qiu, X. Fu, K. Chen, X. Yu, D. Deng, Accelerating trajectory manipulation of symmetric Pearcey Gaussian beam in a uniformly moving parabolic potential. Opt. Express 29, 16270–16283 (2021)

    Article  ADS  Google Scholar 

  34. R. Gao, S. Ren, T. Guo, P. Wang, Y. Xiao, Periodic evolution of Pearcey-Gaussian beam in fractional Schrödinger equation under Gaussian potential. J. Phys. B At. Mol. Opt. Phys. 55, 095401 (2022)

    Article  ADS  Google Scholar 

  35. Y. Li, Y. Peng, W. Hong, Propagation of the Pearcey pulse with a linear chirp. Res. Phys. 16, 102932 (2020)

    Google Scholar 

  36. F. Zang, L. Liu, F. Deng, Y. Liu, L. Dong, Y. Shi, Dual-focusing behavior of one-dimensional quadratically chirped Pearcey-Gaussian beam. Opt. Express 29, 26048–26057 (2021)

    Article  ADS  Google Scholar 

  37. R. Gao, S. Ren, T. Guo, P. Wang, Y. Xiao, Propagation dynamics of chirped Pearcey-Gaussian beam in fractional Schrödinger equation under Gaussian potential. Optik 254, 168661 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant nos. 61475198 and 11705108), the Shanxi Scholarship Council of China (Grant no. 2015-011), 111 project (Grant no. D18001), the Hundred Talent Program of the Shanxi Province (2018), and the Central Government guides local science and Technology Development Fund projects (Grant no. YDZJSX2021B011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zang, F., Dong, L. et al. The evolution and interaction of the asymmetric Pearcey–Gaussian beam in nonlinear Kerr medium. Appl. Phys. B 128, 179 (2022). https://doi.org/10.1007/s00340-022-07899-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07899-4

Navigation