Skip to main content
Log in

Two off-axis elliptic optical vortices generated by an elliptic spiral forked plate

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An elliptic spiral forked plate (ESFP) is proposed to generate two off-axis elliptic optical vortices, whose topological charges are identified by the numbers of lines in the vortices. Moreover, the number of lines minus one is equal to the absolute value of the topological charge. a and c are the vertical ellipticity factors, which adjust the lengths of the vertical axes for the elliptical vortices generated by φ and ϕ, respectively. b and d are the horizontal ellipticity factors, which adjust the lengths of the horizontal axes for the elliptical vortices generated by φ and ϕ, respectively. φ and ϕ present the elliptic spiral phase plates for the elliptic forked grating and elliptic spiral zone plate, respectively. When ellipticity factors (a, b, c, d) satisfy a = c = 1 and b = d = 0.5, the topological charge identification is the most obvious. At this time, the elliptic vortices are vertical. On the contrary, i.e., a = c = 0.5 and b = d = 1, the elliptic vortices are horizontal. The elliptical vortex can rotate by adjusting the horizontal modulation parameter g. For the vertical and horizontal elliptical vortices, the slopes of the long axes are equal to − 1/g and g, respectively. The ESFP consists of the elliptic forked grating and elliptic spiral zone plate with the topological charges l1 and l2 respectively. The left and right elliptic vortices have the topological charges of l2 – l1 and l2 + l1, respectively. The method of constructing the ESFP is illustrated. It is proved in the simulations and experiments that the topological charges of the two elliptic vortices can be identified by the numbers of the lines. The proposed zone plate is used for optical trapping, optical communication and optical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. X.H. Zhang, T. Xia, S.B. Cheng, S.H. Tao, Free-space information transfer using the elliptic vortex beam with fractional topological charge. Opt. Commun. 431, 238–244 (2019)

    Article  ADS  Google Scholar 

  2. Z. Ji, H. Zang, C. Fan, J. Wang, C. Zheng, L. Wei, C. Wang, L. Cao, Fractal spiral zone plates. J. Opt. Soc. Am. A 35, 726–731 (2018)

    Article  ADS  Google Scholar 

  3. J. Pu, P.H. Jones, Devil’s lens optical tweezers. Opt. Express 23, 8190–8199 (2015)

    Article  ADS  Google Scholar 

  4. N.R. Heckenberg, R. McDuff, C.P. Smith, H. Rubinsztein-Dunlop, M.J. Wegener, Laser beams with phase singularities. Opt. Quant. Electron. 24, S951–S962 (1992)

    Article  Google Scholar 

  5. V. Lerner, D. Shwa, Y. Drori, N. Katz, Shaping Laguerre-Gaussian laser modes with binary gratings using a digital micromirror device. Opt. Lett. 37, 4826–4828 (2012)

    Article  ADS  Google Scholar 

  6. T. Lei, M. Zhang, Y. Li, P. Jia, G.N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, X. Yuan, Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light: Sci. Appl. 4, e257 (2015)

    Article  ADS  Google Scholar 

  7. N.L. Kazanskiy, S.N. Khonina, S.V. Karpeev, A.P. Porfirev, Diffractive optical elements for multiplexing structured laser beams. Quantum Electron. 50, 629–635 (2020)

    Article  ADS  Google Scholar 

  8. I. Moreno, J.A. Davis, B.M.L. Pascoguin, M.J. Mitry, D.M. Cottrell, Vortex sensing diffraction gratings. Opt. Lett. 34, 2927–2929 (2009)

    Article  ADS  Google Scholar 

  9. N. Zhang, J.A. Davis, I. Moreno, J. Lin, K.-J. Moh, D.M. Cottrell, X. Yuan, Analysis of fractional vortex beams using a vortex grating spectrum analyzer. Appl. Opt. 49, 2456–2462 (2010)

    Article  ADS  Google Scholar 

  10. S.N. Khonina, A.V. Ustinov, Binary multi-order diffraction optical elements with variable fill factor for the formation and detection of optical vortices of arbitrary order. Appl. Opt. 58, 8227–8236 (2019)

    Article  ADS  Google Scholar 

  11. L. Rayleigh, Laboratory notebook entry of April 11, 1871, “Quoted in RW Wood, ” physical optics. Macmillan, New York 37, 38 (1934)

    Google Scholar 

  12. R.W. Wood, LIII. Phase-reversal zone-plates, and diffraction-telescopes. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 45, 511–522 (1898)

    Article  Google Scholar 

  13. C. Allain, M. Cloitre, Spatial spectrum of a general family of self-similar arrays. Phys. Rev. A 36, 5751–5757 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  14. S.N. Khonina, S.G. Volotovskiy, Fractal cylindrical fracxicon. Opt. Memory Neural Netw. 27, 1–9 (2018)

    Article  Google Scholar 

  15. S.N. Khonina, A.V. Ustinov, R.V. Skidanov, A.P. Porfirev, Local foci of a parabolic binary diffraction lens. Appl. Opt. 54, 5680–5685 (2015)

    Article  ADS  Google Scholar 

  16. N.R. Heckenberg, R. Mcduff, C.P. Smith, A.G. White, Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 17, 221 (1992)

    Article  ADS  Google Scholar 

  17. Z. Jaroszewicz, A. Kolodziejczyk, D. Mouriz, C. Gomez-Reino, Spiral zone plates with arbitrary diameter of the dark spot in the centre of their focal point. Opt. Commun. 114, 1–8 (1995)

    Article  ADS  Google Scholar 

  18. L. Wei, Y. Gao, X. Wen, Z. Zhao, L. Cao, Y. Gu, Fractional spiral zone plates. J. Opt. Soc. Am. A 30, 233–237 (2013)

    Article  ADS  Google Scholar 

  19. T. Xia, S. Cheng, S. Tao, An annular beam with segmented phase gradients generated by a modified spiral zone plate. J. Opt. 21, 115602 (2019)

    Article  ADS  Google Scholar 

  20. A. Sabatyan, Z. Behjat, Radial phase modulated spiral zone plate for generation and manipulation of optical perfect vortex. Opt. Quant. Electron. (2017). https://doi.org/10.1007/s11082-017-1211-4

    Article  Google Scholar 

  21. S.H. Tao, X.C. Yuan, J. Lin, R.E. Burge, Sequence of focused optical vortices generated by a spiral fractal zone plate. Appl. Phys. Lett. 89, 416–458 (2006)

    Google Scholar 

  22. A. Calatayud, V. Ferrando, L. Remón, W.D. Furlan, J.A. Monsoriu, Twin axial vortices generated by Fibonacci lenses. Opt. Express 21, 10234–10239 (2013)

    Article  ADS  Google Scholar 

  23. T. Xia, S. Cheng, S. Tao, Two pairs of twin foci with the golden mean generated by a modified Fibonacci zone plate. J. Opt. 21, 035602 (2019)

    Article  ADS  Google Scholar 

  24. V.V. Kotlyar, A.A. Kovalev, A.P. Porfirev, Elliptic Gaussian optical vortices. Phys. Rev. A 95, 8 (2017)

    Article  Google Scholar 

  25. V.V. Kotlyar, A.A. Kovalev, A.P. Porfirev, Elliptic perfect optical vortices. Optik 156, 49–59 (2018)

    Article  ADS  Google Scholar 

  26. X.H. Liu, J.X. Pu, Investigation on the scintillation reduction of elliptical vortex beams propagating in atmospheric turbulence. Opt. Express 19, 26444–26450 (2011)

    Article  ADS  Google Scholar 

  27. R. Chakraborty, A. Ghosh, Generation of an elliptic hollow beam using Mathieu and Bessel functions. J. Opt. Soc. Am. A 23, 2278–2282 (2006)

    Article  ADS  Google Scholar 

  28. G. Liang, W.J. Cheng, Q. Wang, Rotations of elliptic vortex beams in media with and without anisotropy. J. Opt. 21, 8 (2019)

    Google Scholar 

  29. Y.X. Liu, J.X. Pu, Measuring the orbital angular momentum of elliptical vortex beams by using a slit hexagon aperture. Opt. Commun. 284, 2424–2429 (2011)

    Article  ADS  Google Scholar 

  30. Y. Liang, E. Wang, H. Li, C. Xie, Tailoring focused optical vortices by using spiral forked plates. Opt. Lett. 44, 935–938 (2019)

    Article  ADS  Google Scholar 

  31. H. Ebrahimi, A. Sabatyan, Multi-region spiral photon sieve to produce tailorable multiple vortex. Opt. Laser Technol. 126, 106137 (2020)

    Article  Google Scholar 

  32. P. García-Martínez, M.M. Sánchez-López, J.A. Davis et al., Generation of Bessel beam arrays through Dammann gratings[J]. Appl. Opt. 51(9), 1375–1381 (2012)

    Article  ADS  Google Scholar 

  33. J. Zhou, W. Zhang, L. Chen, Experimental detection of high-order or fractional orbital angular momentum of light based on a robust mode converter[J]. Appl. Phys. Lett. 108(11), 111108 (2016)

    Article  ADS  Google Scholar 

Download references

Funding

The research was financially supported by the Fundamental Research Funds for the Central Universities of Central South University, China (Grant No. 2020zzts043), and the Central South University of College Students’ Innovation and Entrepreneurship Project (20210010020032, 20210010020015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Xia.

Ethics declarations

Conflict of interest

There are no conflicts of interest related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, T., Huang, X., Zhao, H. et al. Two off-axis elliptic optical vortices generated by an elliptic spiral forked plate. Appl. Phys. B 128, 176 (2022). https://doi.org/10.1007/s00340-022-07895-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07895-8

Navigation