Skip to main content
Log in

Self-powered high-performance flexible aluminum nitride nanowire deep ultraviolet photodetector

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report a high-performance self-powered, flexible, and single aluminum nitride nanowire ultraviolet photodetector (AlNNW-UVPD) with an excellent detectivity and responsivity of 2.62 × 1012 cm Hz1/2 W−1 and 362.5 mA/W, respectively, under 254 nm UV light exposure. We fabricated a very small size, flexible nanoscale photodetector via a very cost-efficient hot-contact method, achieving very good speed with the rise time and fall time of 50 ms and 251.5 ms, respectively. The AlNNW-UVPD device selectivity was demonstrated by two different UV light sources of 254 nm and 302 nm at a bias voltage of 0 V. Furthermore, the device showed very good durability to vigorous bending test. In addition to being very small, cost-effective, flexible, high performing, and durable, our self-powered AlNNW-UV photodetector can offer innovative solutions and insights for portable, sensitive, small, and flexible electronics and photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Sett, S. Sengupta, N. Ganesh, K.S. Narayan, A.K. Raychaudhuri, Nanotechnology 29, 445202 (2018)

    Article  ADS  Google Scholar 

  2. Q. An, X. Meng, K. Xiong, Y. Qiu, Sci. Rep. 7, 4885 (2017)

    Article  ADS  Google Scholar 

  3. H.M. Huang, R.S. Chen, H.Y. Chen, T.W. Liu, C.C. Kuo, C.P. Chen, H.C. Hsu, L.C. Chen, K.H. Chen, Y.J. Yang, Appl. Phys. Lett. 96, 062104 (2010)

    Article  ADS  Google Scholar 

  4. A. BenMoussa, J.F. Hochedez, R. Dahal, J. Li, J.Y. Lin, H.X. Jiang, A. Soltani, J.C. De Jaeger, U. Kroth, M. Richter, Appl. Phys. Lett. 92, 022108 (2008)

    Article  ADS  Google Scholar 

  5. W. Zheng, F. Huang, R. Zheng, H. Wu, Adv. Mater. 27, 3921 (2015)

    Article  Google Scholar 

  6. Y. Zou, Y. Zhang, Y. Hu, H. Gu, Sensors 18, 2072 (2018)

    Article  ADS  Google Scholar 

  7. A. Kenry, K.T. Yong, S.F. Yu, J. Mater. Sci. 47, 5341 (2012)

    Article  ADS  Google Scholar 

  8. P. Pooja, P. Chinnamuthu, IEEE Sens. J. 21, 13192 (2021)

    Article  ADS  Google Scholar 

  9. C. Wei, J. Xu, S. Shi, Y. Bu, R. Cao, J. Chen, J. Xiang, X. Zhang, L. Li, J. Colloid Interface Sci. 577, 279 (2020)

    Article  ADS  Google Scholar 

  10. F. Liu, L. Li, T. Guo, H. Gan, X. Mo, J. Chen, S. Deng, N. Xu, Nanoscale Res. Lett. 7, 454 (2012)

    Article  ADS  Google Scholar 

  11. Y.A. Ali, K. Teker, Microelectron. Eng. 211, 26 (2019)

    Article  Google Scholar 

  12. R.A. Youngman, J.H. Harris, J. Am. Ceram. Soc. 73, 3238 (1990)

    Article  Google Scholar 

  13. J. Pastrňák, L. Roskovcová, Phys. Status Solidi 26, 591 (1968)

    Article  Google Scholar 

  14. K. Teker, Mat. Sci. and Tech. 31, 1832–1836 (2015)

    Article  Google Scholar 

  15. L. Jia, W. Zheng, F. Huang, PhotoniX 1, 22 (2020)

    Article  Google Scholar 

  16. P.M. Pataniya, C.K. Sumesh, A.C.S. Appl, Nano Mater. 3, 6935 (2020)

    Google Scholar 

  17. L. Su, W. Yang, J. Cai, H. Chen, X. Fang, Small 13, 1701687 (2017)

    Article  Google Scholar 

  18. W. Tian, Y. Wang, L. Chen, L. Li, Small 13, 1701848 (2017)

    Article  Google Scholar 

  19. C. Zhou, S. Raju, B. Li, M. Chan, Y. Chai, C.Y. Yang, Adv. Funct. Mater. 28, 1802954 (2018)

    Article  Google Scholar 

  20. C. Soci, A. Zhang, X.-Y. Bao, H. Kim, Y. Lo, D. Wang, J. Nanosci. Nanotechnol. 10, 1430 (2010)

    Article  Google Scholar 

  21. T. Saito, T. Hitora, H. Ishihara, M. Matsuoka, H. Hitora, H. Kawai, I. Saito, E. Yamaguchi, Metrologia 46, S272–S276 (2009)

    Article  ADS  Google Scholar 

  22. V. Pecunia, J. Phys. Mater. 2, 042001 (2019)

    Article  Google Scholar 

  23. S.V.N. Pammi, V. Tran, R. Maddaka, J. Eom, J.S. Jung, H. Jeong, M. Kim, V. Pecunia, S.G. Yoon, Adv. Opt. Mater. 8, 2000845 (2020)

    Article  Google Scholar 

  24. B. Ouyang, K. Zhang, Y. Yang, Adv. Mater. Technol. 2, 1700208 (2017)

    Article  Google Scholar 

  25. Y. Wang, C. Wu, D. Guo, P. Li, S. Wang, A. Liu, C. Li, F. Wu, W. Tang, A.C.S. Appl, Electron. Mater. 2, 2032 (2020)

    Google Scholar 

  26. L. Zheng, F. Teng, Z. Zhang, B. Zhao, X. Fang, J. Mater. Chem. C 4, 10032 (2016)

    Article  Google Scholar 

  27. M.A. Yildirim, K. Teker, J. Alloys Compd. 868, 159255 (2021)

    Article  Google Scholar 

  28. W. Wang, Y. Ma, L. Qi, Adv. Funct. Mater. 27, 1603653 (2017)

    Article  Google Scholar 

  29. D. De Fazio, I. Goykhman, D. Yoon, M. Bruna, A. Eiden, S. Milana, U. Sassi, M. Barbone, D. Dumcenco, K. Marinov, A. Kis, A.C. Ferrari, ACS Nano 10, 8252 (2016)

    Article  Google Scholar 

  30. H. Deng, X. Yang, D. Dong, B. Li, D. Yang, S. Yuan, K. Qiao, Y.-B. Cheng, J. Tang, H. Song, Nano Lett. 15, 7963 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Partial financial support was received from the Istanbul Development Agency (ISTKA) under Grant Agreement No. TR10/16/YNY/0102.

Author information

Authors and Affiliations

Authors

Contributions

K.T. and Y.B.O wrote the main manuscript text. Y.B.O prepared the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Kasif Teker.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozdemir, Y.B., Teker, K. Self-powered high-performance flexible aluminum nitride nanowire deep ultraviolet photodetector. Appl. Phys. B 128, 171 (2022). https://doi.org/10.1007/s00340-022-07893-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07893-w

Navigation