Abstract
Ytterbium (Yb)-doped optical fibers are mainly used in the fiber laser resonator and amplifier systems. These systems have been widely utilized for applications in air and space, the defense industry, and the medical field. Particularly for the applications yielding operation in harsh environments consisting of radiation, it is essential to determine the radiation hardness of the Yb-doped optical fibers and their long-term performance in such environments. This study analyzed the optical properties of four different Yb-doped aluminophosphosilicate fibers before and after gamma irradiation. For each fiber, the effect of different total dose values including 0.5, 1, 10, and 50 kGy were determined at different operation wavelengths, such as 495 nm, 590 nm, 685 nm, and 730 nm, using radiation-induced attenuation (RIA) analysing curves. The total dose values of 10 kGy and 50 kGy were studied to demonstrate the results under extreme environmental conditions such as large hadron colliders (LHCs). Our findings reveal that the formation of radiation-induced color centers (e.g. AlOHC, POHC, and NBOHC) are highly dependent on the Yb-concentration, the amount of excess alumina (Al\(_2\)O\(_3\)) compared to the phosphorous pentoxide (P\(_2\)O\(_5\)), total irradiation dose and wavelength at which the respective RIA is recorded.
Similar content being viewed by others
References
M.J. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded (CRC Press, Boca Raton, 2001), p.798. https://doi.org/10.1201/9780203904657
H. Pask, R..J. Carman, D..C. Hanna, A..C. Tropper, C..J. Mackechnie, P..R. Barber, J..M. Dawes, Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2/spl mu/m region. IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995). https://doi.org/10.1109/2944.468377
S.W. Harun, M.C. Paul, M. Moghaddam, S. Das, R. Sen, A. Dhar, M. Pal, S.K. Bhadra, H. Ahmad, Diode-pumped 1028 nm ytterbium-doped fiber laser with near 90% slope efficiency. Laser Phys. 20(3), 656–660 (2010). https://doi.org/10.1134/S1054660X10050051
K. Shima, S. Ikoma, K. Uchiyama, Y. Takubo, M. Kashiwagi, D. Tanaka, 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing, in Fiber Lasers XV: Technology and Systems, SPIE, USA, vol. 10512, ed. by I. Hartl, A.L. Carter (International Society for Optics and Photonics, Bellingham, 2018), pp.45–50. https://doi.org/10.1117/12.2287624
M.N. Zervas, High power ytterbium-doped fiber lasers-fundamentals and applications. Int. J. Mod. Phys. B 28(12), 1442009 (2014). https://doi.org/10.1142/S0217979214420090
A.I.D. Andres, Q. Esteban, M. Embid, Improved extrinsic polymer optical fiber sensors for gamma-ray monitoring in radioprotection applications. Opt. Laser Technol. 93, 201–207 (2017). https://doi.org/10.1016/j.optlastec.2017.02.001
K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M. Chen, A. Galvanauskas, et al., New developments in high power eye-safe \(\rm LMA\) fibers. Proc. SPIE, Fiber Lasers III: Technology, Systems, and Applications, vol. 6102, p 610206 (2006). https://doi.org/10.1117/12.646663
Y. Midilli, B. Ortaç, Demonstration of an all-fiber ultra-low numerical aperture ytterbium-doped large mode area fiber in a master oscillator power amplifier configuration above 1 kw power level. J. Lightwave Technol. 38(7), 1915–1920 (2020). https://doi.org/10.1109/JLT.2020.2970213
R. Paschotta, J. Nilsson, A.C. Tropper, D.C. Hanna, Ytterbium-doped fiber amplifiers. IEEE J. Quantum Electron. 33(7), 1049–1056 (1997)
B.P. Fox, K. Simmons-Potter, W.J. Thomes, D.A.V. Kliner, Gamma-radiation-induced photodarkening in unpumped optical fibers doped with rare-earth constituents. IEEE Trans. Nucl. Sci. 57(3), 1618–1625 (2010). https://doi.org/10.1109/TNS.2010.2043854
G.F. Knoll, Radiation Detection and Measurement (Wiley, New York, 2010). https://doi.org/10.1201/b11943-6
B.P. Fox, K. Simmons-Potter, D.A.V. Kliner, S.W. Moore, Effect of low-earth orbit space on radiation-induced absorption in rare-earth-doped optical fibers. J. Non-Cryst. Solids 378, 79–88 (2013). https://doi.org/10.1016/j.jnoncrysol.2013.06.009
N. Akchurin, N. Bartosik, J. Damgov, F.D. Guio, G. Dissertori, E. Kendir, S. Kunori, T. Mengke, F. Nessi-Tedaldi, N. Pastrone, S. Pigazzini, S. Yaltkaya, Cerium-doped fused-silica fibers for particle physics detectors. J. Instrum. 15(03), 03054–03054 (2020). https://doi.org/10.1088/1748-0221/15/03/c03054
F. Fienga, Z. Szillasi, N. Beni, A. Irace, A. Gaddi, W. Zeuner, A. Ball, S. Buontempo, G. Breglio, A fiber optic sensors monitoring system for the central beam pipe of the cms experiment. Opt. Laser Technol. 120, 105650 (2019). https://doi.org/10.1016/j.optlastec.2019.105650
B.P. Fox, Z.V. Schneider, K. Simmons-Potter, W.J. Thomes, D.C. Meister, R.P. Bambha, D.A.V. Kliner, Spectrally resolved transmission loss in gamma irradiated \(\rm Yb\)-doped optical fibers. IEEE J. Quantum Electron. 44(6), 581–586 (2008). https://doi.org/10.1109/JQE.2008.919873
O. Berne, M. Caussanel, O. Gilard, A model for the prediction of \({\rm EDFA}\) gain in a space radiation environment. IEEE Photon. Technol. Lett. 16(10), 2227–2229 (2004). https://doi.org/10.1109/LPT.2004.833877
G.M. Williams, B.M. Wright, W.D. Mack, E.J. Friebele, Projecting the performance of erbium-doped fiber devices in a space radiation environment, in Optical Fiber Reliability and Testing, SPIE, USA, vol. 3848, ed. by M.J. Matthewson (International Society for Optics and Photonics, Bellingham, 1999), pp.271–280. https://doi.org/10.1117/12.372781
E.W. Taylor, J. Liu, Ytterbium-doped fiber laser behavior in a gamma-ray environment, in Photonics for Space Environments X, SPIE, USA, vol. 5897, ed. by E.W. Taylor (International Society for Optics and Photonics, Bellingham, 2005), pp.129–137. https://doi.org/10.1117/12.618933
E..J. Friebele, E..W. Taylor, G. Turguet de Beauregard, J..A. Wall, C..E. Barnes, Interlaboratory comparison of radiation-induced attenuation in optical fibers. I. Steady-state exposures. J. Lightwave Technol. 6(2), 165–171 (1988). https://doi.org/10.1109/50.3984
M.C. Paul, R. Sen, S.K. Bhadra, K. Dasgupta, Radiation response behaviour of \(\rm Al\) codoped germano-silicate \(\rm SM\) fiber at high radiation dose. Opt. Cmmun. 282(5), 872–878 (2009). https://doi.org/10.1016/j.optcom.2008.11.052
R..-x Xing, Y..-b Sheng, Z..-j Liu, H..-q Li, Z..-w Jiang, J..-g Peng, L..-y Yang, J..-y Li, N..-l Dai, Investigation on radiation resistance of \(Er/Ce\) co-doped silicate glasses under \(5 kGy\) gamma-ray irradiation. Opt. Mater. Express 2(10), 1329–1335 (2012). https://doi.org/10.1364/OME.2.001329
N. Akchurin, E. Kendir, Ş Yaltkaya, J. Damgov, F.D. Guio, S. Kunori, Radiation-hardness studies with cerium-doped fused-silica fibers. J. Instrum. 14(03), 03020–03020 (2019). https://doi.org/10.1088/1748-0221/14/03/p03020
H. Henschel, O. Kohn, H.U. Schmidt, J. Kirchof, S. Unger, Radiation-induced loss of rare earth doped silica fibres. IEEE Trans. Nucl. Sci. 45(3), 1552–1557 (1998). https://doi.org/10.1109/23.685238
B. Tortech, Y. Ouerdane, S. Girard, J.-P. Meunier, A. Boukenter, T. Robin, B. Cadier, P. Crochet, Radiation effects on \({\rm Yb}\)-and \({\rm Er/Yb}\)-doped optical fibers: a micro-luminescence study. J. Non-Cryst. Solids 355(18–21), 1085–1088 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.01.055
G. Keiser, Optical fiber communications. McGraw-Hill, New York (2000)
O.M. Borman, Neutron versus gamma radiation effects on ytterbium-doped optical fibers. Technical report, Air Force Institute of Technology Wright-Patterson AFB OH (2016)
C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, L. Hu, Origin of radiation-induced darkening in \({\rm Yb}^{3+}/{\rm Al}^{3+}/{\rm P}^{5+}\)-doped silica glasses: effect of the \({\rm P/Al}\) ratio. J. Phys. Chem. B 122(10), 2809–2820 (2018). https://doi.org/10.1021/acs.jpcb.7b12587
K. Nassau, The Physics and Chemistry of Color: the Fifteen Causes of Color (Wiley, New York, 2001). https://doi.org/10.1002/col.5080120105
T. Arai, K. Ichii, S. Tanigawa, M. Fujimaki, Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses, in Fiber Lasers VIII: Technology, Systems, and Applications. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7914, ed. by E. Honea, J.W. Dawson (2011), p. 79140. https://doi.org/10.1117/12.879800
D.L. Griscom, Characterization of three \({\rm E}^{\prime }\)-center variants in \({\rm X-}\) and \(\gamma\)-irradiated high purity \(\alpha\)-\({\rm SiO}_2\). Nucl. Instru. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1, 481–488 (1984). https://doi.org/10.1016/0168-583X(84)90113-7
G. Pacchioni, L. Skuja, D.L. Griscom, Defects in SiO2 and Related Dielectrics: Science and Technology SiO2 and Related Dielectrics: Science and Technology, vol. 2 (Springer, Berlin, 2012). https://doi.org/10.1007/978-94-010-0944-7
D.L. Griscom, Defect structure of glasses: some outstanding questions in regard to vitreous silica. J. Non-Cryst. Solids 73(1–3), 51–77 (1985). https://doi.org/10.1016/0022-3093(85)90337-0
S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, C. Marcandella, Radiation effects on silica-based optical fibers: recent advances and future challenges. IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013). https://doi.org/10.1109/TNS.2012.2235464
D.L. Griscom, A minireview of the natures of radiation-induced point defects in pure and doped silica glasses and their visible/near-\({\rm IR}\) absorption bands, with emphasis on self-trapped holes and how they can be controlled. Phys. Res. Int. (2013). https://doi.org/10.1155/2013/379041
L. Vaccaro, M. Cannas, V. Radzig, Vibrational properties of the surface-nonbridging oxygen in silica nanoparticles. Phys. Rev. B 78(23), 233408 (2008). https://doi.org/10.1103/PhysRevB.78.233408
W. Luo, Z. Xiao, J. Wen, J. Yin, Z. Chen, Z. Wang, T. Wang, Defect center characteristics of silica optical fiber material by gamma ray radiation, in 2011 Asia Communications and Photonics Conference and Exhibition (ACP) (2011), pp. 1–6. https://doi.org/10.1117/12.905302
S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. Di Francesca, A. Morana, B. Winkler et al., Overview of radiation induced point defects in silica-based optical fibers. Rev. Phys. (2019). https://doi.org/10.1016/j.revip.2019.100032
A.V. Shubin, M.V. Yashkov, M.A. Melkumov, S.A. Smirnov, I.A. Bufetov, E.M. Dianov, Photodarkening of alumosilicate and phosphosilicate \(\rm Yb\)-doped fibers, in CLEO/Europe and IQEC 2007 Conference Digest. (Optica Publishing Group, USA, 2007). https://doi.org/10.1109/CLEOE-IQEC.2007.4386519, p. 3-1
D.L. Griscom, E. Friebele, K. Long, J. Fleming, Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers. J. Appl. Phys. 54(7), 3743–3762 (1983). https://doi.org/10.1063/1.332591
R. Weeks, P. Bray, Electron spin resonance spectra of gamma-ray-irradiated phosphate glasses and compounds: oxygen vacancies. J. Chem. Phys. 48(1), 5–13 (1968). https://doi.org/10.1063/1.1667952
E. Friebele, D. Griscom, Color centers in glass optical fiber waveguides. MRS Online Proc. Libr. Arch. (1985). https://doi.org/10.1557/PROC-61-319
S. Jetschke, S. Unger, A. Schwuchow, M. Leich, J. Kirchhof, Efficient \({\rm Yb }\) laser fibers with low photodarkening by optimization of the core composition. Opt. Express 16(20), 15540–15545 (2008). https://doi.org/10.1364/OE.16.015540
F. Wang, C. Shao, C. Yu, S. Wang, L. Zhang, G. Gao, L. Hu, Effect of \({\rm AlPO}_4\) join concentration on optical properties and radiation hardening performance of \({\rm Yb}\)-doped \({\rm Al}_2{\rm O}_3-{\rm P}_2{\rm O}_5-{\rm SiO}_2\) glass. J. Appl. Phys. 125(17), 173104 (2019). https://doi.org/10.1063/1.5096469
H. Hosono, H. Kawazoe, Radiation-induced coloring and paramagnetic centers in synthetic \(\rm SiO_2: Al\) glasses. Nucl. Instrum. Methods Phys. Res. Sect. B 91(1), 395–399 (1994). https://doi.org/10.1016/0168-583X(94)96255-3
S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier et al., Recent advances in radiation-hardened fiber-based technologies for space applications. J. Opt. 20(9), 093001 (2018). https://doi.org/10.1088/2040-8986/aad271
D.L. Griscom, Fractal kinetics of radiation-induced point-defect formation and decay in amorphous insulators: application to color centers in silica-based optical fibers. Phys. Rev. B 64(17), 174201 (2001). https://doi.org/10.1103/PhysRevB.64.174201
F. Xie, C. Shao, M. Wang, F. Lou, M. Liu, C. Yu, S. Feng, X. Ye, L. Hu, Research on photo-radiation darkening performance of ytterbium-doped silica fibers for space applications. J. Lightwave Technol. 37(4), 1091–1097 (2019). https://doi.org/10.1109/JLT.2018.2886253
S. Girard, Y. Ouerdane, B. Tortech, C. Marcandella, T. Robin, B. Cadier, J. Baggio, P. Paillet, V. Ferlet-Cavrois, A. Boukenter et al., Radiation effects on ytterbium-and ytterbium/erbium-doped double-clad optical fibers. IEEE Trans. Nucl. Sci. 56(6), 3293–3299 (2009). https://doi.org/10.1109/TNS.2009.2033999
W. Xu, J. Ren, C. Shao, X. Wang, M. Wang, L. Zhang, D. Chen, S. Wang, C. Yu, L. Hu, Effect of \({\rm P}^{5+}\)on spectroscopy and structure of \({\rm Yb}^{3+}/{\rm Al}^{3+}/{\rm P}^{5+}\) co-doped silica glass. J. Lumin. 167(C), 8–15 (2015). https://doi.org/10.1016/j.jlumin.2015.05.061
N. Dai, L. Hu, J. Yang, S. Dai, A. Lin, Spectroscopic properties of \(\rm Yb^{3+}\)-doped silicate glasses. J. Alloy. Compd. 363(1), 1–5 (2004). https://doi.org/10.1016/S0925-8388(03)00379-7
C. Jiang, H. Liu, Q. Zeng, X. Tang, F. Gan, Yb: phosphate laser glass with high emission cross-section. J. Phys. Chem. Solids 61(8), 1217–1223 (2000). https://doi.org/10.1016/S0022-3697(99)00419-9
M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T.W. Hansch, R. Holzwarth, Radiation induced absorption in rare earth doped optical fibers. IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012). https://doi.org/10.1109/TNS.2011.2178862
T. Deschamps, H. Vezin, C. Gonnet, N. Ollier, Evidence of alohc responsible for the radiation-induced darkening in \({\rm Yb}\) doped fiber. Opt. Express 21(7), 8382–8392 (2013). https://doi.org/10.1364/OE.21.008382
D. Fan, Y. Luo, B. Yan, A. Stancălie, D. Ighigeanu, D. Neguţ, D. Sporea, J. Zhang, J. Wen, J. Ma, P. Lu, G.-D. Peng, Ionizing radiation effect upon \({\rm Er/Yb }\) co-doped fibre made by in-situ nano solution doping. J. Lightwave Technol. 38(22), 6334–6344 (2020). https://doi.org/10.1364/JLT.38.006334
S. Girard, Y. Ouerdane, M. Vivona, B. Tortech, T. Robin, A. Boukenter, C. Marcandella, B. Cadier, J.-P. Meunier, Radiation effects on rare-earth doped optical fibers, in E.W. Taylor, D.A. Cardimona (eds.) Nanophotonics and Macrophotonics for Space Environments IV, SPIE, USA, vol. 7817. (International Society for Optics and Photonics, 2010), pp. 137– 146. https://doi.org/10.1117/12.862706
A.V. Kir’yanov et al., Electron-irradiation and photo-excitation darkening and bleaching of \(\rm Yb\) doped silica fibers: comparison. Opt. Photon. J. 1(04), 155 (2011). https://doi.org/10.4236/opj.2011.14026
B. Fox, Z. Schneider, K. Simmons-Potter, W. Thomes Jr, D. Meister, R. Bambha, D. Kliner, Gamma radiation effects in \(\rm Yb\)-doped optical fiber, in Fiber Lasers IV: Technology, Systems, and Applications, vol. 6453 (2007), p. 645328. International Society for Optics and Photonics. https://doi.org/10.1117/12.712244
S.M. Kaczmarek, T. Tsuboi, M. Ito, G. Boulon, G. Leniec, Optical study of \({\rm Yb}^{3+}/Yb^{2+}\)conversion in \({ \rm CaF}_2\) crystals. J. Phys. Condens. Matter 17(25), 3771–3786 (2005). https://doi.org/10.1088/0953-8984/17/25/005
M. Engholm, P. Jelger, F. Laurell, L. Norin, Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping. Opt. Lett. 34(8), 1285–1287 (2009). https://doi.org/10.1364/OL.34.001285
Acknowledgements
This work has been supported by the Scientific and Technological Research Council of Turkey, TÜBİTAK (no. 120F281).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kendir Tekgül, E., Midilli, Y., Çamiçi, H.C. et al. Effects of gamma radiation on Yb-doped Al–P–silicate optical fibers. Appl. Phys. B 128, 170 (2022). https://doi.org/10.1007/s00340-022-07891-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00340-022-07891-y