Skip to main content
Log in

Effects of gamma radiation on Yb-doped Al–P–silicate optical fibers

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Ytterbium (Yb)-doped optical fibers are mainly used in the fiber laser resonator and amplifier systems. These systems have been widely utilized for applications in air and space, the defense industry, and the medical field. Particularly for the applications yielding operation in harsh environments consisting of radiation, it is essential to determine the radiation hardness of the Yb-doped optical fibers and their long-term performance in such environments. This study analyzed the optical properties of four different Yb-doped aluminophosphosilicate fibers before and after gamma irradiation. For each fiber, the effect of different total dose values including 0.5, 1, 10, and 50 kGy were determined at different operation wavelengths, such as 495 nm, 590 nm, 685 nm, and 730 nm, using radiation-induced attenuation (RIA) analysing curves. The total dose values of 10 kGy and 50 kGy were studied to demonstrate the results under extreme environmental conditions such as large hadron colliders (LHCs). Our findings reveal that the formation of radiation-induced color centers (e.g. AlOHC, POHC, and NBOHC) are highly dependent on the Yb-concentration, the amount of excess alumina (Al\(_2\)O\(_3\)) compared to the phosphorous pentoxide (P\(_2\)O\(_5\)), total irradiation dose and wavelength at which the respective RIA is recorded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.J. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded (CRC Press, Boca Raton, 2001), p.798. https://doi.org/10.1201/9780203904657

    Book  Google Scholar 

  2. H. Pask, R..J. Carman, D..C. Hanna, A..C. Tropper, C..J. Mackechnie, P..R. Barber, J..M. Dawes, Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2/spl mu/m region. IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995). https://doi.org/10.1109/2944.468377

    Article  ADS  Google Scholar 

  3. S.W. Harun, M.C. Paul, M. Moghaddam, S. Das, R. Sen, A. Dhar, M. Pal, S.K. Bhadra, H. Ahmad, Diode-pumped 1028 nm ytterbium-doped fiber laser with near 90% slope efficiency. Laser Phys. 20(3), 656–660 (2010). https://doi.org/10.1134/S1054660X10050051

    Article  ADS  Google Scholar 

  4. K. Shima, S. Ikoma, K. Uchiyama, Y. Takubo, M. Kashiwagi, D. Tanaka, 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing, in Fiber Lasers XV: Technology and Systems, SPIE, USA, vol. 10512, ed. by I. Hartl, A.L. Carter (International Society for Optics and Photonics, Bellingham, 2018), pp.45–50. https://doi.org/10.1117/12.2287624

    Chapter  Google Scholar 

  5. M.N. Zervas, High power ytterbium-doped fiber lasers-fundamentals and applications. Int. J. Mod. Phys. B 28(12), 1442009 (2014). https://doi.org/10.1142/S0217979214420090

    Article  ADS  Google Scholar 

  6. A.I.D. Andres, Q. Esteban, M. Embid, Improved extrinsic polymer optical fiber sensors for gamma-ray monitoring in radioprotection applications. Opt. Laser Technol. 93, 201–207 (2017). https://doi.org/10.1016/j.optlastec.2017.02.001

    Article  ADS  Google Scholar 

  7. K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, M. Chen, A. Galvanauskas, et al., New developments in high power eye-safe \(\rm LMA\) fibers. Proc. SPIE, Fiber Lasers III: Technology, Systems, and Applications, vol. 6102, p 610206 (2006). https://doi.org/10.1117/12.646663

  8. Y. Midilli, B. Ortaç, Demonstration of an all-fiber ultra-low numerical aperture ytterbium-doped large mode area fiber in a master oscillator power amplifier configuration above 1 kw power level. J. Lightwave Technol. 38(7), 1915–1920 (2020). https://doi.org/10.1109/JLT.2020.2970213

    Article  ADS  Google Scholar 

  9. R. Paschotta, J. Nilsson, A.C. Tropper, D.C. Hanna, Ytterbium-doped fiber amplifiers. IEEE J. Quantum Electron. 33(7), 1049–1056 (1997)

    Article  ADS  Google Scholar 

  10. B.P. Fox, K. Simmons-Potter, W.J. Thomes, D.A.V. Kliner, Gamma-radiation-induced photodarkening in unpumped optical fibers doped with rare-earth constituents. IEEE Trans. Nucl. Sci. 57(3), 1618–1625 (2010). https://doi.org/10.1109/TNS.2010.2043854

    Article  ADS  Google Scholar 

  11. G.F. Knoll, Radiation Detection and Measurement (Wiley, New York, 2010). https://doi.org/10.1201/b11943-6

    Book  Google Scholar 

  12. B.P. Fox, K. Simmons-Potter, D.A.V. Kliner, S.W. Moore, Effect of low-earth orbit space on radiation-induced absorption in rare-earth-doped optical fibers. J. Non-Cryst. Solids 378, 79–88 (2013). https://doi.org/10.1016/j.jnoncrysol.2013.06.009

    Article  ADS  Google Scholar 

  13. N. Akchurin, N. Bartosik, J. Damgov, F.D. Guio, G. Dissertori, E. Kendir, S. Kunori, T. Mengke, F. Nessi-Tedaldi, N. Pastrone, S. Pigazzini, S. Yaltkaya, Cerium-doped fused-silica fibers for particle physics detectors. J. Instrum. 15(03), 03054–03054 (2020). https://doi.org/10.1088/1748-0221/15/03/c03054

    Article  Google Scholar 

  14. F. Fienga, Z. Szillasi, N. Beni, A. Irace, A. Gaddi, W. Zeuner, A. Ball, S. Buontempo, G. Breglio, A fiber optic sensors monitoring system for the central beam pipe of the cms experiment. Opt. Laser Technol. 120, 105650 (2019). https://doi.org/10.1016/j.optlastec.2019.105650

    Article  Google Scholar 

  15. B.P. Fox, Z.V. Schneider, K. Simmons-Potter, W.J. Thomes, D.C. Meister, R.P. Bambha, D.A.V. Kliner, Spectrally resolved transmission loss in gamma irradiated \(\rm Yb\)-doped optical fibers. IEEE J. Quantum Electron. 44(6), 581–586 (2008). https://doi.org/10.1109/JQE.2008.919873

    Article  ADS  Google Scholar 

  16. O. Berne, M. Caussanel, O. Gilard, A model for the prediction of \({\rm EDFA}\) gain in a space radiation environment. IEEE Photon. Technol. Lett. 16(10), 2227–2229 (2004). https://doi.org/10.1109/LPT.2004.833877

    Article  ADS  Google Scholar 

  17. G.M. Williams, B.M. Wright, W.D. Mack, E.J. Friebele, Projecting the performance of erbium-doped fiber devices in a space radiation environment, in Optical Fiber Reliability and Testing, SPIE, USA, vol. 3848, ed. by M.J. Matthewson (International Society for Optics and Photonics, Bellingham, 1999), pp.271–280. https://doi.org/10.1117/12.372781

    Chapter  Google Scholar 

  18. E.W. Taylor, J. Liu, Ytterbium-doped fiber laser behavior in a gamma-ray environment, in Photonics for Space Environments X, SPIE, USA, vol. 5897, ed. by E.W. Taylor (International Society for Optics and Photonics, Bellingham, 2005), pp.129–137. https://doi.org/10.1117/12.618933

    Chapter  Google Scholar 

  19. E..J. Friebele, E..W. Taylor, G. Turguet de Beauregard, J..A. Wall, C..E. Barnes, Interlaboratory comparison of radiation-induced attenuation in optical fibers. I. Steady-state exposures. J. Lightwave Technol. 6(2), 165–171 (1988). https://doi.org/10.1109/50.3984

    Article  ADS  Google Scholar 

  20. M.C. Paul, R. Sen, S.K. Bhadra, K. Dasgupta, Radiation response behaviour of \(\rm Al\) codoped germano-silicate \(\rm SM\) fiber at high radiation dose. Opt. Cmmun. 282(5), 872–878 (2009). https://doi.org/10.1016/j.optcom.2008.11.052

    Article  ADS  Google Scholar 

  21. R..-x Xing, Y..-b Sheng, Z..-j Liu, H..-q Li, Z..-w Jiang, J..-g Peng, L..-y Yang, J..-y Li, N..-l Dai, Investigation on radiation resistance of \(Er/Ce\) co-doped silicate glasses under \(5 kGy\) gamma-ray irradiation. Opt. Mater. Express 2(10), 1329–1335 (2012). https://doi.org/10.1364/OME.2.001329

    Article  ADS  Google Scholar 

  22. N. Akchurin, E. Kendir, Ş Yaltkaya, J. Damgov, F.D. Guio, S. Kunori, Radiation-hardness studies with cerium-doped fused-silica fibers. J. Instrum. 14(03), 03020–03020 (2019). https://doi.org/10.1088/1748-0221/14/03/p03020

    Article  Google Scholar 

  23. H. Henschel, O. Kohn, H.U. Schmidt, J. Kirchof, S. Unger, Radiation-induced loss of rare earth doped silica fibres. IEEE Trans. Nucl. Sci. 45(3), 1552–1557 (1998). https://doi.org/10.1109/23.685238

    Article  ADS  Google Scholar 

  24. B. Tortech, Y. Ouerdane, S. Girard, J.-P. Meunier, A. Boukenter, T. Robin, B. Cadier, P. Crochet, Radiation effects on \({\rm Yb}\)-and \({\rm Er/Yb}\)-doped optical fibers: a micro-luminescence study. J. Non-Cryst. Solids 355(18–21), 1085–1088 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.01.055

    Article  ADS  Google Scholar 

  25. G. Keiser, Optical fiber communications. McGraw-Hill, New York (2000)

    Google Scholar 

  26. O.M. Borman, Neutron versus gamma radiation effects on ytterbium-doped optical fibers. Technical report, Air Force Institute of Technology Wright-Patterson AFB OH (2016)

  27. C. Shao, J. Ren, F. Wang, N. Ollier, F. Xie, X. Zhang, L. Zhang, C. Yu, L. Hu, Origin of radiation-induced darkening in \({\rm Yb}^{3+}/{\rm Al}^{3+}/{\rm P}^{5+}\)-doped silica glasses: effect of the \({\rm P/Al}\) ratio. J. Phys. Chem. B 122(10), 2809–2820 (2018). https://doi.org/10.1021/acs.jpcb.7b12587

    Article  Google Scholar 

  28. K. Nassau, The Physics and Chemistry of Color: the Fifteen Causes of Color (Wiley, New York, 2001). https://doi.org/10.1002/col.5080120105

    Book  Google Scholar 

  29. T. Arai, K. Ichii, S. Tanigawa, M. Fujimaki, Gamma-radiation-induced photodarkening in ytterbium-doped silica glasses, in Fiber Lasers VIII: Technology, Systems, and Applications. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7914, ed. by E. Honea, J.W. Dawson (2011), p. 79140. https://doi.org/10.1117/12.879800

  30. D.L. Griscom, Characterization of three \({\rm E}^{\prime }\)-center variants in \({\rm X-}\) and \(\gamma\)-irradiated high purity \(\alpha\)-\({\rm SiO}_2\). Nucl. Instru. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1, 481–488 (1984). https://doi.org/10.1016/0168-583X(84)90113-7

    Article  ADS  Google Scholar 

  31. G. Pacchioni, L. Skuja, D.L. Griscom, Defects in SiO2 and Related Dielectrics: Science and Technology SiO2 and Related Dielectrics: Science and Technology, vol. 2 (Springer, Berlin, 2012). https://doi.org/10.1007/978-94-010-0944-7

    Book  Google Scholar 

  32. D.L. Griscom, Defect structure of glasses: some outstanding questions in regard to vitreous silica. J. Non-Cryst. Solids 73(1–3), 51–77 (1985). https://doi.org/10.1016/0022-3093(85)90337-0

    Article  ADS  Google Scholar 

  33. S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, C. Marcandella, Radiation effects on silica-based optical fibers: recent advances and future challenges. IEEE Trans. Nucl. Sci. 60(3), 2015–2036 (2013). https://doi.org/10.1109/TNS.2012.2235464

    Article  ADS  Google Scholar 

  34. D.L. Griscom, A minireview of the natures of radiation-induced point defects in pure and doped silica glasses and their visible/near-\({\rm IR}\) absorption bands, with emphasis on self-trapped holes and how they can be controlled. Phys. Res. Int. (2013). https://doi.org/10.1155/2013/379041

    Article  Google Scholar 

  35. L. Vaccaro, M. Cannas, V. Radzig, Vibrational properties of the surface-nonbridging oxygen in silica nanoparticles. Phys. Rev. B 78(23), 233408 (2008). https://doi.org/10.1103/PhysRevB.78.233408

    Article  ADS  Google Scholar 

  36. W. Luo, Z. Xiao, J. Wen, J. Yin, Z. Chen, Z. Wang, T. Wang, Defect center characteristics of silica optical fiber material by gamma ray radiation, in 2011 Asia Communications and Photonics Conference and Exhibition (ACP) (2011), pp. 1–6. https://doi.org/10.1117/12.905302

  37. S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. Di Francesca, A. Morana, B. Winkler et al., Overview of radiation induced point defects in silica-based optical fibers. Rev. Phys. (2019). https://doi.org/10.1016/j.revip.2019.100032

    Article  Google Scholar 

  38. A.V. Shubin, M.V. Yashkov, M.A. Melkumov, S.A. Smirnov, I.A. Bufetov, E.M. Dianov, Photodarkening of alumosilicate and phosphosilicate \(\rm Yb\)-doped fibers, in CLEO/Europe and IQEC 2007 Conference Digest. (Optica Publishing Group, USA, 2007). https://doi.org/10.1109/CLEOE-IQEC.2007.4386519, p. 3-1

  39. D.L. Griscom, E. Friebele, K. Long, J. Fleming, Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorus-doped silica glass and optical fibers. J. Appl. Phys. 54(7), 3743–3762 (1983). https://doi.org/10.1063/1.332591

    Article  ADS  Google Scholar 

  40. R. Weeks, P. Bray, Electron spin resonance spectra of gamma-ray-irradiated phosphate glasses and compounds: oxygen vacancies. J. Chem. Phys. 48(1), 5–13 (1968). https://doi.org/10.1063/1.1667952

    Article  ADS  Google Scholar 

  41. E. Friebele, D. Griscom, Color centers in glass optical fiber waveguides. MRS Online Proc. Libr. Arch. (1985). https://doi.org/10.1557/PROC-61-319

    Article  Google Scholar 

  42. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, J. Kirchhof, Efficient \({\rm Yb }\) laser fibers with low photodarkening by optimization of the core composition. Opt. Express 16(20), 15540–15545 (2008). https://doi.org/10.1364/OE.16.015540

    Article  ADS  Google Scholar 

  43. F. Wang, C. Shao, C. Yu, S. Wang, L. Zhang, G. Gao, L. Hu, Effect of \({\rm AlPO}_4\) join concentration on optical properties and radiation hardening performance of \({\rm Yb}\)-doped \({\rm Al}_2{\rm O}_3-{\rm P}_2{\rm O}_5-{\rm SiO}_2\) glass. J. Appl. Phys. 125(17), 173104 (2019). https://doi.org/10.1063/1.5096469

    Article  ADS  Google Scholar 

  44. H. Hosono, H. Kawazoe, Radiation-induced coloring and paramagnetic centers in synthetic \(\rm SiO_2: Al\) glasses. Nucl. Instrum. Methods Phys. Res. Sect. B 91(1), 395–399 (1994). https://doi.org/10.1016/0168-583X(94)96255-3

    Article  ADS  Google Scholar 

  45. S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, J.-J. Bonnefois, M. Boutillier, J. Mekki, A. Paveau, B. Cadier et al., Recent advances in radiation-hardened fiber-based technologies for space applications. J. Opt. 20(9), 093001 (2018). https://doi.org/10.1088/2040-8986/aad271

    Article  ADS  Google Scholar 

  46. D.L. Griscom, Fractal kinetics of radiation-induced point-defect formation and decay in amorphous insulators: application to color centers in silica-based optical fibers. Phys. Rev. B 64(17), 174201 (2001). https://doi.org/10.1103/PhysRevB.64.174201

    Article  ADS  Google Scholar 

  47. F. Xie, C. Shao, M. Wang, F. Lou, M. Liu, C. Yu, S. Feng, X. Ye, L. Hu, Research on photo-radiation darkening performance of ytterbium-doped silica fibers for space applications. J. Lightwave Technol. 37(4), 1091–1097 (2019). https://doi.org/10.1109/JLT.2018.2886253

    Article  ADS  Google Scholar 

  48. S. Girard, Y. Ouerdane, B. Tortech, C. Marcandella, T. Robin, B. Cadier, J. Baggio, P. Paillet, V. Ferlet-Cavrois, A. Boukenter et al., Radiation effects on ytterbium-and ytterbium/erbium-doped double-clad optical fibers. IEEE Trans. Nucl. Sci. 56(6), 3293–3299 (2009). https://doi.org/10.1109/TNS.2009.2033999

    Article  ADS  Google Scholar 

  49. W. Xu, J. Ren, C. Shao, X. Wang, M. Wang, L. Zhang, D. Chen, S. Wang, C. Yu, L. Hu, Effect of \({\rm P}^{5+}\)on spectroscopy and structure of \({\rm Yb}^{3+}/{\rm Al}^{3+}/{\rm P}^{5+}\) co-doped silica glass. J. Lumin. 167(C), 8–15 (2015). https://doi.org/10.1016/j.jlumin.2015.05.061

    Article  Google Scholar 

  50. N. Dai, L. Hu, J. Yang, S. Dai, A. Lin, Spectroscopic properties of \(\rm Yb^{3+}\)-doped silicate glasses. J. Alloy. Compd. 363(1), 1–5 (2004). https://doi.org/10.1016/S0925-8388(03)00379-7

    Article  Google Scholar 

  51. C. Jiang, H. Liu, Q. Zeng, X. Tang, F. Gan, Yb: phosphate laser glass with high emission cross-section. J. Phys. Chem. Solids 61(8), 1217–1223 (2000). https://doi.org/10.1016/S0022-3697(99)00419-9

    Article  ADS  Google Scholar 

  52. M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T.W. Hansch, R. Holzwarth, Radiation induced absorption in rare earth doped optical fibers. IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012). https://doi.org/10.1109/TNS.2011.2178862

    Article  ADS  Google Scholar 

  53. T. Deschamps, H. Vezin, C. Gonnet, N. Ollier, Evidence of alohc responsible for the radiation-induced darkening in \({\rm Yb}\) doped fiber. Opt. Express 21(7), 8382–8392 (2013). https://doi.org/10.1364/OE.21.008382

    Article  ADS  Google Scholar 

  54. D. Fan, Y. Luo, B. Yan, A. Stancălie, D. Ighigeanu, D. Neguţ, D. Sporea, J. Zhang, J. Wen, J. Ma, P. Lu, G.-D. Peng, Ionizing radiation effect upon \({\rm Er/Yb }\) co-doped fibre made by in-situ nano solution doping. J. Lightwave Technol. 38(22), 6334–6344 (2020). https://doi.org/10.1364/JLT.38.006334

    Article  ADS  Google Scholar 

  55. S. Girard, Y. Ouerdane, M. Vivona, B. Tortech, T. Robin, A. Boukenter, C. Marcandella, B. Cadier, J.-P. Meunier, Radiation effects on rare-earth doped optical fibers, in E.W. Taylor, D.A. Cardimona (eds.) Nanophotonics and Macrophotonics for Space Environments IV, SPIE, USA, vol. 7817. (International Society for Optics and Photonics, 2010), pp. 137– 146. https://doi.org/10.1117/12.862706

  56. A.V. Kir’yanov et al., Electron-irradiation and photo-excitation darkening and bleaching of \(\rm Yb\) doped silica fibers: comparison. Opt. Photon. J. 1(04), 155 (2011). https://doi.org/10.4236/opj.2011.14026

    Article  ADS  Google Scholar 

  57. B. Fox, Z. Schneider, K. Simmons-Potter, W. Thomes Jr, D. Meister, R. Bambha, D. Kliner, Gamma radiation effects in \(\rm Yb\)-doped optical fiber, in Fiber Lasers IV: Technology, Systems, and Applications, vol. 6453 (2007), p. 645328. International Society for Optics and Photonics. https://doi.org/10.1117/12.712244

  58. S.M. Kaczmarek, T. Tsuboi, M. Ito, G. Boulon, G. Leniec, Optical study of \({\rm Yb}^{3+}/Yb^{2+}\)conversion in \({ \rm CaF}_2\) crystals. J. Phys. Condens. Matter 17(25), 3771–3786 (2005). https://doi.org/10.1088/0953-8984/17/25/005

    Article  ADS  Google Scholar 

  59. M. Engholm, P. Jelger, F. Laurell, L. Norin, Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping. Opt. Lett. 34(8), 1285–1287 (2009). https://doi.org/10.1364/OL.34.001285

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Scientific and Technological Research Council of Turkey, TÜBİTAK (no. 120F281).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Kendir Tekgül.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kendir Tekgül, E., Midilli, Y., Çamiçi, H.C. et al. Effects of gamma radiation on Yb-doped Al–P–silicate optical fibers. Appl. Phys. B 128, 170 (2022). https://doi.org/10.1007/s00340-022-07891-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07891-y

Navigation