Skip to main content
Log in

Two-photon absorption cross-section investigation of visible-light photoinitiators under Q-switched Nd:YAG nanosecond pulse laser at 1064 nm

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Two-photon polymerization (TPP) technologies commonly rely on femtosecond lasers such as Ti:sapphire which limits their accessibility due to high costs and complexities. Recently, multiple reports showed TPP under near-infrared irradiation which enables the use of alternative light sources such as Neodymium-doped lasers known to be affordable and efficient for a nanosecond and picosecond pulsed generation. 4,4′-Bis(dimethyl-amino) benzophenone or Michler’s ketone (MK), one of the photoinitiators commonly used for photopolymerization under UV irradiation, also shows an absorption band in the visible region which allows for two-photon polymerization at the fundamental wavelength of Neodymium-doped lasers at 1064 nm. In this report, we investigated the two-photon absorption (TPA) of MK in contrast with Irgacure-784 and Indane-1,3-dione, reported to also be promising photoinitiators for the same TPP process. Among them, MK showed a large TPA cross-section measured via the nonlinear transmission method and Z-scan technique with Q-switched Nd:YAG nanosecond pulse laser at 1064 nm, demonstrating MK as a promising photoinitiator for the low-cost two-photon polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Andrea, D. Johannes, T. Simon, G. Harald, H. Alois, Light: Adv. Manuf. 2, 20–30 (2021). https://doi.org/10.37188/lam.2021.002

    Article  Google Scholar 

  2. D. Yang, L. Liu, Q. Gong, Y. Li, Macromol. Rapid Commun. 40, 1900041 (2019). https://doi.org/10.1002/marc.201900041

    Article  Google Scholar 

  3. A. Urrios, C. Parra-Cabrera, N. Bhattacharjee, A.M. Gonzalez-Suarez, L.G. Rigat-Brugarolas, U. Nallapatti, J. Samitier, C.A. DeForest, F. Posas, J.L. Garcia-Cordero, A. Folch, Lab Chip 16, 2287–2294 (2016). https://doi.org/10.1039/c6lc00153j

    Article  Google Scholar 

  4. J.F. Xing, M.L. Zheng, X.M. Duan, Chem. Soc. Rev. 44, 5031–5039 (2015). https://doi.org/10.1039/c5cs00278h

    Article  Google Scholar 

  5. X.X. Shen, X.Q. Yu, X.L. Yang, L.Z. Cai, Y.R. Wang, G.Y. Dong, X.F. Meng, X.F. Xu, J. Opt. A: Pure Appl. Opt. 8, 672–676 (2006). https://doi.org/10.1088/1464-4258/8/8/008

    Article  ADS  Google Scholar 

  6. E. Stankevičius, E. Daugnoraitė, A. Selskis, S. Juodkazis, G. Račiukaitis, Opt. Express 25, 4819–4830 (2017). https://doi.org/10.1364/OE.25.004819

    Article  ADS  Google Scholar 

  7. D. Perevoznik, R. Nazir, R. Kiyan, K. Kurselis, B. Koszarna, D.T. Gryko, B.N. Chichkov, Opt. Express 27, 25119–25125 (2019). https://doi.org/10.1364/OE.27.025119

    Article  ADS  Google Scholar 

  8. B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.Y.S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S.R. Marder, J.W. Perry, Nature 398, 51–54 (1999). https://doi.org/10.1038/17989

    Article  ADS  Google Scholar 

  9. K.-S. Lee, D.-Y. Yang, S.H. Park, R.H. Kim, Polym. Adv. Technol. 17, 72–82 (2006). https://doi.org/10.1002/pat.664

    Article  Google Scholar 

  10. M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, S. Juodkazis, Opt. Express 18, 10209–10221 (2010). https://doi.org/10.1364/OE.18.010209

    Article  ADS  Google Scholar 

  11. T. Olivier, F. Billard, H. Akhouayri, Opt. Express 12, 1377–1382 (2004). https://doi.org/10.1364/OPEX.12.001377

    Article  ADS  Google Scholar 

  12. M. Degirmenci, A. Onen, Y. Yagci, S.P. Pappas, Polym. Bull. 46, 443–449 (2001). https://doi.org/10.1007/s002890170030

    Article  Google Scholar 

  13. D. Sabol, M.R. Gleeson, S. Liu, J.T. Sheridan, J. Appl. Phys. 107, 053113 (2010). https://doi.org/10.1063/1.3276173

    Article  ADS  Google Scholar 

  14. F. Dumur, Eur. Polymer J. 143, 110178 (2021). https://doi.org/10.1016/j.eurpolymj.2020.110178

    Article  Google Scholar 

  15. M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagan, E.W.V. Stryland, IEEE J. Quantum Electron. 26, 760–769 (1990). https://doi.org/10.1109/3.53394

    Article  ADS  Google Scholar 

  16. K.J. Schafer, J.M. Hales, M. Balu, K.D. Belfield, E.W. Van Stryland, D.J. Hagan, J. Photochem. Photobiol. A 162, 497–502 (2004). https://doi.org/10.1016/S1010-6030(03)00394-0

    Article  Google Scholar 

  17. A. Ajami, W. Husinsky, R. Liska, N. Pucher, J. Opt. Soc. Am. B 27, 2290–2297 (2010). https://doi.org/10.1364/JOSAB.27.002290

    Article  ADS  Google Scholar 

  18. Y. Wen, X. Jiang, J. Yin, Prog. Org. Coat. 66(1), 65–72 (2009). https://doi.org/10.1016/j.porgcoat.2009.06.003

    Article  Google Scholar 

Download references

Acknowledgements

This research project is supported by Mahidol University (Basic Research Fund: fiscal year 2021).

Author information

Authors and Affiliations

Authors

Contributions

Suwat Romphosri wrote the main manuscript text and prepared the figures. Phyu Sin Oo wrote a certain small portion of the manuscript. Suwat Romphosri, Pornpawee Karanyasopon, Rakchart Traiphhol, Tanant Waritanant, helped with the ideation and methodology. All authors reviewed the manuscript.

Corresponding author

Correspondence to Tanant Waritanant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 107 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romphosri, S., Oo, P.S., Karanyasopon, P. et al. Two-photon absorption cross-section investigation of visible-light photoinitiators under Q-switched Nd:YAG nanosecond pulse laser at 1064 nm. Appl. Phys. B 128, 164 (2022). https://doi.org/10.1007/s00340-022-07888-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07888-7

Navigation