Skip to main content
Log in

Tunable frequency selective surface using crossed shaped graphene metasurface geometry for far infrared frequency spectrum

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The mathematical and numerical analysis of the Graphene infrared tunable frequency selective surface (FSS) for far-infrared spectrum has been clarified. The proposed FSS shows different properties of transmittance, reflectance, polarization variation for the different range of fermi voltage which can be tuned by external biasing. Angular changes in the graphene plane demonstrate different frequency responses of reflected wave polarization. Proposed structures are also computed at normal as well as the complementary condition of the same design. The proposed structure also computed the variation in the many parameters with the rotation change of the frequency selective surface structure. It can observe more than 60% of the overall transmittance for the wide range of the frequency. The ultrathin and easy to fabricate structure opens up the door for various applications such as reflector, absorber, polarizer, a modulator for the THz regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The proposed work is numerically investigated by COMSOL simulation software.

References

  1. S. Liu, T.J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W.X. Tang, C. Ouyang, X.Y. Zhou, H. Yuan, H.F. Ma, W.X. Jiang, J. Han, W. Zhang, Q. Cheng, Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci. Appl. 5, e16076–e16076 (2016). https://doi.org/10.1038/lsa.2016.76

    Article  Google Scholar 

  2. S.K. Patel, V. Sorathiya, S. Lavadiya, T.K. Nguyen, V. Dhasarathan, Polarization insensitive graphene-based tunable frequency selective surface for far-infrared frequency spectrum. Phys. E Low-Dimensional Syst. Nanostruct. 120, 114049 (2020). https://doi.org/10.1016/j.physe.2020.114049

    Article  Google Scholar 

  3. S.K. Patel, V. Sorathiya, S. Lavadiya, Y. Luo, T.K. Nguyen, V. Dhasarathan, Numerical analysis of polarization-insensitive squared spiral-shaped graphene metasurface with negative refractive index. Appl. Phys. B Lasers Opt. (2020). https://doi.org/10.1007/s00340-020-07435-2

    Article  Google Scholar 

  4. B. Wu, Y. Hu, Y.T. Zhao, W.B. Lu, W. Zhang, Large angle beam steering THz antenna using active frequency selective surface based on hybrid graphene-gold structure. Opt. Express. 26, 15353 (2018). https://doi.org/10.1364/oe.26.015353

    Article  ADS  Google Scholar 

  5. Y. Chen, J. Zhu, Y. Xie, N. Feng, Q.H. Liu, Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network. Nanoscale 11, 9749–9755 (2019). https://doi.org/10.1039/c9nr01315f

    Article  Google Scholar 

  6. H. Lu, D. Mao, C. Zeng, F. Xiao, D. Yang, T. Mei, J. Zhao, Plasmonic Fano spectral response from graphene metasurfaces in the MIR region. Opt. Mater. Express. 8, 1058 (2018). https://doi.org/10.1364/ome.8.001058

    Article  ADS  Google Scholar 

  7. B. Wu, Y.J. Yang, H.L. Li, Y.T. Zhao, C. Fan, W.B. Lu, Low-loss dual-polarized frequency-selective rasorber with graphene-based planar resistor. IEEE Trans. Antennas Propag. 68, 7439–7446 (2020). https://doi.org/10.1109/TAP.2020.2998173

    Article  ADS  Google Scholar 

  8. R. Mishra, R. Panwar, Investigation of graphene fractal frequency selective surface loaded terahertz absorber. Opt. Quantum Electron. 52, 1–13 (2020). https://doi.org/10.1007/s11082-020-02433-2

    Article  Google Scholar 

  9. S.K. Patel, V. Sorathiya, T.K. Nguyen, V. Dhasarathan, Numerical investigation of tunable metasurface of graphene split-ring resonator for terahertz frequency with reflection controlling property. Phys. E Low-Dimensional Syst. Nanostruct. 118, 113910 (2020). https://doi.org/10.1016/j.physe.2019.113910

    Article  Google Scholar 

  10. W.B. Lu, J.W. Wang, J. Zhang, Z.G. Liu, H. Chen, W.J. Song, Z.H. Jiang, Flexible and optically transparent microwave absorber with wide bandwidth based on graphene. Carbon N. Y. 152, 70–76 (2019). https://doi.org/10.1016/j.carbon.2019.06.011

    Article  Google Scholar 

  11. R. Yan, S. Arezoomandan, B. Sensale-Rodriguez, H.G. Xing, Exceptional terahertz wave modulation in graphene enhanced by frequency selective surfaces. ACS Photon. 3, 315–323 (2016). https://doi.org/10.1021/acsphotonics.5b00639

    Article  Google Scholar 

  12. M. Qu, J. Song, L. Yao, S. Li, L. Deng, Y. Yang, Design of a graphene-based tunable frequency selective surface and its application for variable radiation pattern of a dipole at terahertz. Radio Sci. 53, 183–189 (2018). https://doi.org/10.1002/2017RS006401

    Article  ADS  Google Scholar 

  13. C. Pei, L. Yang, G. Wang, Y. Wang, X. Jiang, Y. Hao, Y. Li, J. Yang, Broadband graphene/glass hybrid waveguide polarizer. IEEE Photonics Technol. Lett. 27, 927–930 (2015). https://doi.org/10.1109/LPT.2015.2398452

    Article  ADS  Google Scholar 

  14. J. Chen, N. Xu, A. Zhang, J. Guo, Using dispersion HIE-FDTD method to simulate the graphene-based polarizer. IEEE Trans. Antennas Propag. 64, 3011–3017 (2016). https://doi.org/10.1109/TAP.2016.2555325

    Article  ADS  Google Scholar 

  15. R.E.P. De Oliveira, C.J.S. De Matos, Graphene based waveguide polarizers: in-depth physical analysis and relevant parameters. Sci. Rep. 5, 16949 (2015). https://doi.org/10.1038/srep16949

    Article  ADS  Google Scholar 

  16. Y.V. Bludov, M.I. Vasilevskiy, N.M.R. Peres, Tunable graphene-based polarizer. J. Appl. Phys. (2012). https://doi.org/10.1063/1.4759319

    Article  Google Scholar 

  17. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  ADS  Google Scholar 

  18. X. Li, L. Lin, L.S. Wu, W.Y. Yin, J.F. Mao, A bandpass graphene frequency selective surface with tunable polarization rotation for THz applications. IEEE Trans. Antennas Propag. 65, 662–672 (2017). https://doi.org/10.1109/TAP.2016.2633163

    Article  ADS  Google Scholar 

  19. K. Sarabandi, N. Behdad, A frequency selective surface with miniaturized elements. IEEE Trans. Antennas Propag. 55, 1239–1245 (2007). https://doi.org/10.1109/TAP.2007.895567

    Article  ADS  Google Scholar 

  20. L. Martinez-Lopez, J. Rodriguez-Cuevas, J.I. Martinez-Lopez, A.E. Martynyuk, A multilayer circular polarizer based on bisected split-ring frequency selective surfaces. IEEE Antennas Wirel. Propag. Lett. 13, 153–156 (2014). https://doi.org/10.1109/LAWP.2014.2298393

    Article  ADS  Google Scholar 

  21. M. Qu, M. Rao, S. Li, L. Deng, Tunable antenna radome based on graphene frequency selective surface. AIP Adv. 7, 095307 (2017). https://doi.org/10.1063/1.5003020

    Article  ADS  Google Scholar 

  22. V. Sorathiya, V. Dave, Numerical study of a high negative refractive index based tunable metamaterial structure by graphene split ring resonator for far infrared frequency. Opt. Commun. 456, 124581 (2020). https://doi.org/10.1016/j.optcom.2019.124581

    Article  Google Scholar 

  23. B. Li, Y.S. Zeng, B.J. Chen, C.H. Chan, Terahertz frequency-selective surface with polarization selection and conversion characteristics. IEEE Trans. Terahertz Sci. Technol. 9, 510–519 (2019). https://doi.org/10.1109/TTHZ.2019.2928171

    Article  ADS  Google Scholar 

  24. D.W. Wang, W.S. Zhao, H. Xie, J. Hu, L. Zhou, W. Chen, P. Gao, J. Ye, Y. Xu, H.S. Chen, E.P. Li, W.Y. Yin, Tunable THz multiband frequency-selective surface based on hybrid metal-graphene structures. IEEE Trans. Nanotechnol. 16, 1132–1137 (2017). https://doi.org/10.1109/TNANO.2017.2749269

    Article  ADS  Google Scholar 

  25. I. Epstein, D. Alcaraz, Z. Huang, V.V. Pusapati, J.P. Hugonin, A. Kumar, X.M. Deputy, T. Khodkov, T.G. Rappoport, J.Y. Hong, N.M.R. Peres, J. Kong, D.R. Smith, F.H.L. Koppens, Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes. Science 368, 1219–1223 (2020). https://doi.org/10.1126/science.abb1570

    Article  ADS  Google Scholar 

  26. S.K. Patel, V. Sorathiya, Z. Sbeah, S. Lavadiya, T.K. Nguyen, V. Dhasarathan, Graphene-based tunable infrared multi band absorber. Opt. Commun. 474, 126109 (2020). https://doi.org/10.1016/j.optcom.2020.126109

    Article  Google Scholar 

  27. J. Jiang, Q. Zhang, Q. Ma, S. Yan, F. Wu, X. He, Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials. Opt. Mater. Express. 5, 1962 (2015). https://doi.org/10.1364/ome.5.001962

    Article  ADS  Google Scholar 

  28. S.K. Patel, V. Sorathiya, S. Lavadiya, L. Thomas, T.K. Nguyen, V. Dhasarathan, Multi-layered graphene silica-based tunable absorber for infrared wavelength based on circuit theory approach. Plasmonics 15, 1767–1779 (2020). https://doi.org/10.1007/s11468-020-01191-x

    Article  Google Scholar 

  29. A. Pandya, V. Sorathiya, S. Lavadiya, Graphene-based nanophotonic devices, in Recent Advances in Nanophotonics—Fundamentals and Application. (IntechOpen, Rejika, 2020). https://doi.org/10.5772/intechopen.93853

    Chapter  Google Scholar 

  30. E. Moreau, S. Godey, F.J. Ferrer, D. Vignaud, X. Wallart, J. Avila, M.C. Asensio, F. Bournel, J.J. Gallet, Graphene growth by molecular beam epitaxy on the carbon-face of SiC. Appl. Phys. Lett. 97, 241907 (2010). https://doi.org/10.1063/1.3526720

    Article  ADS  Google Scholar 

  31. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102

    Article  ADS  Google Scholar 

  32. N. Petrone, C.R. Dean, I. Meric, A.M. Van Der Zande, P.Y. Huang, L. Wang, D. Muller, K.L. Shepard, J. Hone, Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. Nano Lett. 12, 2751–2756 (2012). https://doi.org/10.1021/nl204481s

    Article  ADS  Google Scholar 

  33. M.C. Sherrott, P.W.C. Hon, K.T. Fountaine, J.C. Garcia, S.M. Ponti, V.W. Brar, L.A. Sweatlock, H.A. Atwater, Experimental demonstration of >230° phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces. Nano Lett. 17, 3027–3034 (2017). https://doi.org/10.1021/acs.nanolett.7b00359

    Article  ADS  Google Scholar 

  34. L. Song, L. Ci, W. Gao, P.M. Ajayan, Transfer printing of graphene using gold film. ACS Nano 3, 1353–1356 (2009). https://doi.org/10.1021/nn9003082

    Article  Google Scholar 

  35. T. Zou, B. Zhao, W. Xin, Y. Wang, B. Wang, X. Zheng, H. Xie, Z. Zhang, J. Yang, C.L. Guo, High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse. Light Sci. Appl. (2020). https://doi.org/10.1038/s41377-020-0311-2

    Article  Google Scholar 

  36. G.B. Barin, Y. Song, I.D.F. Gimenez, A.G.S. Filho, L.S. Barreto, J. Kong, Optimized graphene transfer: influence of polymethylmethacrylate (PMMA) layer concentration and baking time on grapheme final performance. Carbon N. Y. 84, 82–90 (2015). https://doi.org/10.1016/j.carbon.2014.11.040

    Article  Google Scholar 

  37. M.P. Lavin-Lopez, J.L. Valverde, A. Garrido, L. Sanchez-Silva, P. Martinez, A. Romero-Izquierdo, Novel etchings to transfer CVD-grown graphene from copper to arbitrary substrates. Chem. Phys. Lett. 614, 89–94 (2014). https://doi.org/10.1016/j.cplett.2014.09.019

    Article  ADS  Google Scholar 

  38. K. Chae, N.D. Cuong, S. Ryu, D. Il Yeom, Y.H. Ahn, S. Lee, J.Y. Park, Electrical properties of ion gels based on PVDF-HFP applicable as gate stacks for flexible devices. Curr. Appl. Phys. 18, 500–504 (2018). https://doi.org/10.1016/j.cap.2018.02.017

    Article  ADS  Google Scholar 

  39. B.J. Kim, H. Jang, S.K. Lee, B.H. Hong, J.H. Ahn, J.H. Cho, High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 10, 3464–3466 (2010). https://doi.org/10.1021/nl101559n

    Article  ADS  Google Scholar 

  40. J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, H. Zhang, Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array. Plasmonics 10, 351–356 (2015). https://doi.org/10.1007/s11468-014-9816-y

    Article  Google Scholar 

  41. D.R. Smith, S. Schultz, P. Markoš, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev. B Condens. Matter Mater. Phys. 65, 1–5 (2002). https://doi.org/10.1103/PhysRevB.65.195104

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Deanship of Scientific Research, Taif University Researchers Supporting Project number (TURSP-2020/08), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Ahmed Nabih Zaki Rashed.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorathiya, V., Lavadiya, S., Parmar, B. et al. Tunable frequency selective surface using crossed shaped graphene metasurface geometry for far infrared frequency spectrum. Appl. Phys. B 128, 169 (2022). https://doi.org/10.1007/s00340-022-07886-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07886-9

Navigation