Skip to main content
Log in

Simplified highly sensitive temperature sensor based on harmonic Vernier effect

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A highly sensitive temperature sensor with cascaded polarization maintaining fiber–Sagnac interferometers (PMF–SIs) based on harmonic Vernier effect has been proposed and experimentally demonstrated. Both simulation and experiment results indicate that the fundamental Vernier effect can be achieved through cascading two PMF–SIs with similar free spectral ranges (FSRs) and the first-order harmonic Vernier effect can be further realized by two PMF–SIs possessing FSRs with an approximate multiple relationship. The maximum sensitivity of the cascaded PMF–SIs based on harmonic Vernier effect has be enhanced about 35.5 times compared with that of single PMF–SI, exhibiting a high temperature sensitivity of − 53.3 nm/°C in the temperature measurement range from 30 to 37 °C. The temperature sensor with simple structure and high sensitivity has a great application prospect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Polito, M.A. Caponero, A. Polimadei, P. Saccomandi, C. Massaroni, S. Silvestri, E. Schena, A needle-like probe for temperature monitoring during laser ablation based on fiber Bragg grating: manufacturing and characterization. J. Med. Device 9(4), 041006 (2015)

    Article  Google Scholar 

  2. X.K. Gao, T.G. Ning, C.B. Zhang, J. Xu, J.J. Zheng, H. Lin, J. Li, L. Pei, H.D. You, A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing. Opt. Commun. 454, 124441 (2020)

    Article  Google Scholar 

  3. B.W. Zhang, M. Kahrizi, High-temperature resistance fiber Bragg grating temperature sensor fabrication. IEEE Sens. J. 7(4), 586–591 (2007)

    Article  ADS  Google Scholar 

  4. U. Sampath, D.G. Kim, H.J. Kim, M.H. Song, Polymer-coated FBG sensor for simultaneous temperature and strain monitoring in composite materials under cryogenic conditions. Appl. Opt. 57(3), 492–497 (2018)

    Article  ADS  Google Scholar 

  5. R. Zeltner, R. Pennetta, S.R. Xie, P.S.J. Russell, Flying particle microlaser and temperature sensor in hollow-core photonic crystal fiber. Opt. Lett. 43(7), 1479–1482 (2018)

    Article  ADS  Google Scholar 

  6. H.L. Wang, A.J. Yang, Temperature sensing property of hollow-core photonic bandgap fiber filled with CdSe/ZnS quantum dots in an UV curing adhesive. Opt. Fiber Technol. 38(5), 104–107 (2017)

    Article  ADS  Google Scholar 

  7. B. Feng, Y. Liu, S.L. Qu, High-temperature sensor based on resonant reflection in hollow core fiber. Opt. Eng. 55(10), 106127 (2016)

    Article  ADS  Google Scholar 

  8. S. Hao, L. Hao, W. Xin, L. Liang, Y.C. Wang, X.C. Ma, J.Q. Zhang, M.L. Hu, X.G. Qiao, Spectrum ameliorative optical fiber temperature sensor based on hollow-core fiber and inner zinc oxide film. Sens. Actuators, B Chem. 245, 423–427 (2017)

    Article  Google Scholar 

  9. X.T. Ren, J. Gao, H.N. Shi, L.H. Huang, S.L. Zhao, S.Q. Xu, A highly sensitive all-fiber temperature sensor based on the enhanced green upconversion luminescence in Lu2MoO6:Er3+/Yb3+ phosphors by co-doping Li+ ions. Optik Int. J. Light Electron Opt. 227, 166084 (2021)

    Article  Google Scholar 

  10. L.V. Nguyen, D.S. Hwang, S. Moon, D.S. Moon, Y. Chung, High temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express 16(15), 11369–11375 (2018)

    Article  ADS  Google Scholar 

  11. C.T. Wang, C.Y. Wang, J.H. Yu, I.T. Kuo, C.W. Tseng, H.C. Jau, Y.J. Chen, T.H. Lin, Highly sensitive optical temperature sensor based on a SiN micro-ring resonator with liquid crystal cladding. Opt. Express 24(2), 1002–1007 (2016)

    Article  ADS  Google Scholar 

  12. Q.Z. Sun, X.H. Sun, W.H. Jia, Z.L. Xu, H.P. Luo, D.M. Liu, L. Zhang, Graphene assisted microfiber for optical-power-based temperature sensor. IEEE Photon. Technol. Lett. 28(4), 383–386 (2016)

    Article  ADS  Google Scholar 

  13. J.F. Zhao, P.P. Niu, C. Zhang, H. Bai, X.D. Sun, Z.B. Han, Simultaneous refractive index and temperature measurement using nested fiber balloon rings. Appl. Opt. 57(23), 6835–6839 (2018)

    Article  ADS  Google Scholar 

  14. L. Jin, M.Y. Li, J.J. He, Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with Vernier effect. Opt. Commun. 284, 156–159 (2011)

    Article  ADS  Google Scholar 

  15. Z.L. Xua, Q.Z. Sun, W.H. Jia, P.P. Shum, D.M. Liu, Highly sensitive refractive index sensor based on two cascaded microfiber knots with Vernier effect. Opt. Express 23(5), 6226–6229 (2015)

    Google Scholar 

  16. P. Zhang, M. Tang, F. Gao, B.P. Zhu, S.N. Fu, J. Ouyang, P.P. Shum, D.M. Liu, Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field. Opt. Express 22(16), 19581–19588 (2014)

    Article  ADS  Google Scholar 

  17. J.J. Tian, Z.G. Li, Y.X. Sun, Y. Yao, High-sensitivity fiber-optic strain sensor based on the Vernier effect and separated Fabry-Perot interferometers. J. Lightw. Technol. 37(21), 5609–5618 (2019)

    Article  ADS  Google Scholar 

  18. P.F. Wang, Y. Jiang, Y. Yi, G. Brambilla, Ultra-high-sensitivity refractive index sensor based on dual-microfiber coupler structure with the Vernier effect. Opt. Lett. 45(5), 1268–1271 (2020)

    Article  ADS  Google Scholar 

  19. Y.X. Zhang, B. Xu, D.N. Wang, H.P. Gong, Y. Li, C.L. Zhao, Sensitivity-enhanced fiber strain sensing system based on microwave frequency scanning with the Vernier effect. Opt. Fiber Technol. 43, 175–179 (2018)

    Article  ADS  Google Scholar 

  20. Q.H. Wang, X. Liu, D.N. Wang, Ultra-sensitive gas pressure sensor based on Vernier effect with controllable amplification factor. Opt. Fiber Technol. 61, 102404 (2021)

    Article  Google Scholar 

  21. L.Y. Shao, Y. Luo, Z.Y. Zhang, X.H. Zou, B. Luo, W. Pan, L.S. Yan, Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect. Opt. Commun. 336, 73–76 (2015)

    Article  ADS  Google Scholar 

  22. Z.W. Xu, X.W. Shu, H.Y. Fu, Sensitivity enhanced fiber sensor based on a fiber ring microwave photonic filter with the Vernier effect. Opt. Express 25(18), 20559–21566 (2017)

    Google Scholar 

  23. Y.N. Li, C.L. Zhao, B. Xu, D.N. Wang, M.H. Yang, Optical cascaded Fabry-Perot interferometer hydrogen sensor based on Vernier effect. Opt. Commun. 414, 166–171 (2018)

    Article  ADS  Google Scholar 

  24. A.D. Gomes, M.S. Ferreira, J. Bierlich, J. Kobelke, M. Rothhardt, H. Bartelt, O. Frazao, Optical harmonic Vernier effect: a new tool for high performance interferometric fiber sensors. Sensors 19(24), 5431 (2019)

    Article  ADS  Google Scholar 

  25. A.D. Gomes, M.S. Ferreira, J. Bierlich, J. Kobelke, M. Rothhardt, H. Bartelt, O. Frazao, Hollow microsphere combined with optical harmonic Vernier effect for strain and temperature discrimination. Opt. Laser Technol. 127, 106198 (2020)

    Article  Google Scholar 

  26. X.M. Yang, S. Wu, H.H. Cheng, J.W. Ma, S. Wang, S.H. Liu, P.X. Lu, Simplified highly-sensitive gas pressure sensor based on harmonic Vernier effect. Opt. Laser Technol. 140, 107007 (2021)

    Article  Google Scholar 

  27. Z.C. Ding, Z.W. Tan, P.K. Zhang, L.W. Zhang, Highly sensitive temperature sensor based on cascaded HiBi-FLMs with the Vernier effect. J. Opt. Soc. Am. B 37(7), 1948–1955 (2020)

    Article  ADS  Google Scholar 

  28. Z.C. Ding, Z.W. Tan, S.Y. Xiao, H.P. Gao, Sensitivity amplification of high birefringence fiber loop mirror temperature sensor with Vernier effect. Appl. Phys. B 127(5), 63 (2021)

    Article  ADS  Google Scholar 

  29. S. Liu, G.W. Liu, D.Y. Lv, M.M. Chen, Z.X. Zhang, Sensitivity enhanced temperature sensor with cascaded Sagnac loops based on harmonic Vernier effect. Opt. Fiber Technol. 66, 102654 (2021)

    Article  Google Scholar 

  30. W.D. Luo, Z.G. Cao, G.S. Zhang, F.Y. Liu, B. Liu, W.Y. Du, Y.H. Han, B.L. Yu, A highly sensitive optical fiber temperature sensor based on the enhanced Vernier effect. Opt. Fiber Technol. 67, 102702 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the supports from National Natural Science Foundation of China under Grant 91950105 and 62105157, Jiangsu Postdoctoral Research Funding Program (2021K228B), Natural Science Funding of Jiangsu Province (BK20211014), and 1311 Talent Plan of Nanjing University of Posts and Telecommunications.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengmeng Chen or Zuxing Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, L., Chen, M. & Zhang, Z. Simplified highly sensitive temperature sensor based on harmonic Vernier effect. Appl. Phys. B 128, 158 (2022). https://doi.org/10.1007/s00340-022-07880-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07880-1

Navigation